--- language: - en license: apache-2.0 tags: - generated_from_trainer base_model: sileod/deberta-v3-base-tasksource-nli metrics: - accuracy - precision - recall - f1 model-index: - name: deberta-v3-bass-complex-questions_classifier results: [] widget: - text: "Why did the company decide to enter the Latin America region?" example_title: "Simple Query" - text: "What was the Company's net profit margin in the last fiscal year, and how does it compare to the industry average?" example_title: "Multiple Queries" - text: "Compare the customer growth rates in the SaaS sector of CloudServices Inc. with that of SaaSSolutions Tech over the last two years." example_title: "Comparable Query" - text: "What are your favorite ways to show friends you're thinking of them?" example_title: "SmallTalk Query" - text: "Alter the proposal to emphasize sustainability practices." example_title: "Functional Query" --- # deberta-v3-bass-complex-questions_classifier This model is a fine-tuned version of [sileod/deberta-v3-base-tasksource-nli](https://huggingface.co/sileod/deberta-v3-base-tasksource-nli) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:---:| | 0.0532 | 2.3585 | 500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.1 - Datasets 2.15.0 - Tokenizers 0.19.1