"""LoRDCoder model class, based on GPT model.

License: Apache-2.0
"""
import math
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from .configuration_lordcoder_v0 import LoRDCoderConfig


# Fused kernels
# Use separate functions for each case because conditionals prevent kernel fusion.
@torch.jit.script
def upcast_masked_softmax(
    x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
):
    input_dtype = x.dtype
    x = x.to(softmax_dtype) * scale
    x = torch.where(mask, x, mask_value)
    x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
    return x


@torch.jit.script
def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
    input_dtype = x.dtype
    x = x.to(softmax_dtype) * scale
    x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
    return x


@torch.jit.script
def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
    x = torch.where(mask, x, mask_value)
    x = torch.nn.functional.softmax(x, dim=-1)
    return x


class LoRDCoderAttention(nn.Module):
    def __init__(self, config, is_cross_attention=False, layer_idx=None):
        super().__init__()
        self.mask_value = None

        self.multi_query = config.multi_query
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        self.kv_heads = 1 if self.multi_query else self.num_heads
        self.kv_dim = self.kv_heads * self.head_dim
        self.split_size = self.embed_dim
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )

        self.scale_attn_weights = config.scale_attn_weights
        self.is_cross_attention = is_cross_attention

        self.layer_idx = layer_idx
        self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
        self.scale_attention_softmax_in_fp32 = (
            config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
        )

        if self.is_cross_attention:
            raise NotImplementedError("Cross Attention not supported.")
            if self.multi_query:
                raise NotImplementedError("Multi-Query Attention not supported for cross_attention")

            self.c_attn = nn.Linear(self.embed_dim, 2 * self.embed_dim)
            self.q_attn = nn.Linear(self.embed_dim, self.embed_dim)
        else:
            self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)

        self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

    def _get_mask_value(self, device, dtype):
        # torch.where expects a tensor. We use a cache to avoid recreating it every time.
        if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
            self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
        return self.mask_value

    def _attn(self, query, key, value, attention_mask=None, head_mask=None):
        dtype = query.dtype
        softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
        upcast = dtype != softmax_dtype

        unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1
        scale_factor = unscale**-1
        if self.scale_attn_weights:
            scale_factor /= self.head_dim**0.5

        # MQA models: (batch_size, query_length, num_heads * head_dim)
        # MHA models: (batch_size, num_heads, query_length, head_dim)
        query_shape = query.shape
        batch_size = query_shape[0]
        key_length = key.size(-1)
        if self.multi_query:
            # (batch_size, query_length, num_heads, head_dim) x (batch_size, head_dim, key_length)
            # -> (batch_size, query_length, num_heads, key_length)
            query_length = query_shape[1]
            attn_shape = (batch_size, query_length, self.num_heads, key_length)
            attn_view = (batch_size, query_length * self.num_heads, key_length)
            # No copy needed for MQA 2, or when layer_past is provided.
            query = query.reshape(batch_size, query_length * self.num_heads, self.head_dim)
        else:
            # (batch_size, num_heads, query_length, head_dim) x (batch_size, num_heads, head_dim, key_length)
            # -> (batch_size, num_heads, query_length, key_length)
            query_length = query_shape[2]
            attn_shape = (batch_size, self.num_heads, query_length, key_length)
            attn_view = (batch_size * self.num_heads, query_length, key_length)
            # Always copies
            query = query.reshape(batch_size * self.num_heads, query_length, self.head_dim)
            # No copy when layer_past is provided.
            key = key.reshape(batch_size * self.num_heads, self.head_dim, key_length)

        attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype)
        if query.device.type == "cpu":
            # This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588.
            # The bug was fixed in https://github.com/pytorch/pytorch/pull/96086,
            # but the fix has not been released as of pytorch version 2.0.0.
            attn_weights = torch.zeros_like(attn_weights)
            beta = 1
        else:
            beta = 0
        attn_weights = torch.baddbmm(attn_weights, query, key, beta=beta, alpha=scale_factor).view(attn_shape)

        if upcast:
            # Use a fused kernel to prevent a large overhead from casting and scaling.
            # Sub-optimal when the key length is not a multiple of 8.
            if attention_mask is None:
                attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype)
            else:
                mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
                # print(attn_weights.device, attention_mask.device, mask_value.device, unscale.device, softmax_dtype)
                attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype)
        else:
            if attention_mask is not None:
                mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)

                # The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
                attn_weights = torch.where(attention_mask, attn_weights, mask_value)

            attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)

        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            if self.multi_query:
                head_mask = head_mask.transpose(1, 2)
            attn_weights = attn_weights * head_mask

        if self.multi_query:
            attn_output = torch.bmm(attn_weights.view(attn_view), value).view(query_shape)
        else:
            attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    def forward(
        self,
        hidden_states: torch.Tensor,
        layer_past: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[
        Tuple[torch.Tensor, Optional[torch.Tensor]],
        Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
    ]:
        if encoder_hidden_states is not None:
            if not hasattr(self, "q_attn") or not self.is_cross_attention:
                raise ValueError(
                    "If class is used as cross attention, the weights `q_attn` have to be defined. "
                    "Please make sure to instantiate class with `LoRDCoderAttention(..., is_cross_attention=True)`."
                )

            query = self.q_attn(hidden_states)
            key_value = self.c_attn(encoder_hidden_states)
            attention_mask = encoder_attention_mask
        elif self.multi_query:
            query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
        else:
            # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
            # i.e., the memory layout is not the same as GPT2.
            # This makes the concatenation with past_key_value more efficient.
            query, key_value = (
                self.c_attn(hidden_states)
                .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
                .transpose(1, 2)
                .split((self.head_dim, 2 * self.head_dim), dim=3)
            )

        if layer_past is not None:
            key_value = torch.cat((layer_past, key_value), dim=-2)
        present = key_value if use_cache else None

        key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)

        attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask)

        if not self.multi_query:
            attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            if self.multi_query:
                # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
                attn_weights = attn_weights.transpose(1, 2)
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)


class LoRDCoderMLP(nn.Module):
    def __init__(self, intermediate_size, config):
        super().__init__()
        embed_dim = config.hidden_size
        self.gate_dim = config.gate_dim

        self.c_fc = torch.nn.Linear(in_features=embed_dim, out_features=intermediate_size, bias=True)
        self.c_gate = torch.nn.Linear(in_features=intermediate_size, out_features=self.gate_dim, bias=True)
        self.c_proj = torch.nn.Linear(in_features=self.gate_dim, out_features=embed_dim, bias=True)

        self.act = ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)

    def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
        hidden_states = self.c_fc(hidden_states)
        hidden_states = self.c_gate(self.act(hidden_states))
        hidden_states = self.c_proj(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class LoRDCoderBlock(nn.Module):
    def __init__(self, config, layer_idx=None):
        super().__init__()
        hidden_size = config.hidden_size
        self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size

        self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.attn = LoRDCoderAttention(config, layer_idx=layer_idx)
        self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

        if config.add_cross_attention:
            if config.multi_query:
                raise NotImplementedError("Cross-attention not implemented for MQA")
            self.crossattention = LoRDCoderAttention(config, is_cross_attention=True, layer_idx=layer_idx)
            self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

        self.mlp = LoRDCoderMLP(self.inner_dim, config)

    def forward(
        self,
        hidden_states: Optional[Tuple[torch.Tensor]],
        layer_past: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[
        Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
    ]:
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_outputs = self.attn(
            hidden_states,
            layer_past=layer_past,
            attention_mask=attention_mask,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attn_outputs[1:]
        # residual connection
        hidden_states = attn_output + residual

        if encoder_hidden_states is not None:
            # add one self-attention block for cross-attention
            if not hasattr(self, "crossattention"):
                raise ValueError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
                    "cross-attention layers by setting `config.add_cross_attention=True`"
                )
            residual = hidden_states
            hidden_states = self.ln_cross_attn(hidden_states)
            cross_attn_outputs = self.crossattention(
                hidden_states,
                attention_mask=attention_mask,
                head_mask=head_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                output_attentions=output_attentions,
            )
            attn_output = cross_attn_outputs[0]
            # residual connection
            hidden_states = residual + attn_output
            outputs = outputs + cross_attn_outputs[2:]  # add cross attentions if we output attention weights

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions, cross_attentions)


class LoRDCoderPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = LoRDCoderConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LoRDCoderBlock"]
    _skip_keys_device_placement = "past_key_values"

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, LoRDCoderMLP):
            # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
            #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
            #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
            #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
            #
            # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
            module.c_proj.weight.data.normal_(
                mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
            )
            module.c_proj._is_hf_initialized = True
        elif isinstance(module, LoRDCoderAttention):
            # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
            #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
            #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
            #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
            #
            # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
            module.c_proj.weight.data.normal_(
                mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
            )
            module.c_proj.weight.data.normal_(
                mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
            )
            module.c_proj._is_hf_initialized = True
        elif isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, LoRDCoderModel):
            module.gradient_checkpointing = value


class LoRDCoderModel(LoRDCoderPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.multi_query = config.multi_query
        self.embed_dim = config.hidden_size

        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)

        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([LoRDCoderBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        max_positions = config.max_position_embeddings
        self.register_buffer(
            "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False
        )

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
        """
        Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
        """

        if (attention_mask is not None) or (self.config.pad_token_id is None):
            return

        # Check only the first and last input IDs to reduce overhead.
        if self.config.pad_token_id in input_ids[:, [-1, 0]]:
            warn_string = (
                "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
                "https://huggingface.co/docs/transformers/troubleshooting"
                "#incorrect-output-when-padding-tokens-arent-masked."
            )

            # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
            # attention_mask or not. In this case, we should still show a warning because this is a rare case.
            if (
                (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
                or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
                or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
            ):
                warn_string += (
                    f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                    f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                    f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
                )

            print("Warning:", warn_string)

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if batch_size <= 0:
            raise ValueError("batch_size has to be defined and > 0")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0].size(-2)

        if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_length > 0:
                position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
        elif position_ids is None:
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # Self-attention mask.
        query_length = input_shape[-1]
        key_length = past_length + query_length
        self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]

        if attention_mask is not None:
            self_attention_mask = self_attention_mask * attention_mask.view(batch_size, 1, -1).to(
                dtype=torch.bool, device=self_attention_mask.device
            )

        # MQA models: (batch_size, query_length, n_heads, key_length)
        # MHA models: (batch_size, n_heads, query_length, key_length)
        attention_mask = self_attention_mask.unsqueeze(2 if self.multi_query else 1)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if (
            self.config.add_cross_attention
            and encoder_hidden_states is not None
            and encoder_attention_mask is not None
        ):
            if encoder_attention_mask.dim() == 2:
                encoder_attention_mask.unsqueeze(1)
            assert encoder_attention_mask.dim() == 3
            encoder_attention_mask = encoder_attention_mask.bool().unsqueeze(2 if self.multi_query else 1)
        else:
            encoder_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = [] if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
        all_hidden_states = () if output_hidden_states else None
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i],
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i],
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]
            if use_cache:
                presents.append(outputs[1])

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
                if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


class LoRDCoderForCausalLM(LoRDCoderPreTrainedModel):

    def __init__(self, config):
        super().__init__(config)
        self.transformer = LoRDCoderModel(config)
        self.lm_head = lambda x: torch.matmul(x, self.transformer.wte.weight.T)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        raise NotImplementedError("Cannot resize the embeddings of LoRDCoderForCausalLM.")

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past_key_values:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "position_ids": position_ids,
                "attention_mask": attention_mask,
                "token_type_ids": token_type_ids,
            }
        )
        return model_inputs

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
        r"""
        labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
        )

    @staticmethod
    def _reorder_cache(
        past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)