--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.22434915773353753 --- # whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5913 - Wer Ortho: 0.2340 - Wer: 0.2243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 1.7357 | 2.0 | 50 | 0.7179 | 0.2947 | 0.2412 | | 0.2772 | 4.0 | 100 | 0.4758 | 0.2404 | 0.2113 | | 0.081 | 6.0 | 150 | 0.5069 | 0.2628 | 0.2282 | | 0.02 | 8.0 | 200 | 0.5289 | 0.2564 | 0.2297 | | 0.0044 | 10.0 | 250 | 0.5366 | 0.2452 | 0.2251 | | 0.0018 | 12.0 | 300 | 0.5565 | 0.2404 | 0.2251 | | 0.0011 | 14.0 | 350 | 0.5668 | 0.2388 | 0.2259 | | 0.0009 | 16.0 | 400 | 0.5762 | 0.2364 | 0.2251 | | 0.0007 | 18.0 | 450 | 0.5847 | 0.2348 | 0.2243 | | 0.0006 | 20.0 | 500 | 0.5913 | 0.2340 | 0.2243 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3