tarsur909 commited on
Commit
b84c9f7
·
verified ·
1 Parent(s): 5045d75

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -10,7 +10,7 @@ license: mit
10
 
11
  `CodeRankEmbed` is a 137M bi-encoder supporting 8192 context length for code retrieval. It significantly outperforms various open-source and proprietary code embedding models on various code retrieval tasks.
12
 
13
- Check out our [blog post](https://gangiswag.github.io/cornstack/) and [paper (to be released soon)]() for more details!
14
 
15
  Combine `CodeRankEmbed` with our re-ranker [`CodeRankLLM`](https://huggingface.co/cornstack/CodeRankLLM) for even higher quality code retrieval.
16
 
@@ -38,7 +38,7 @@ We release the scripts to evaluate our model's performance [here](https://github
38
  ```python
39
  from sentence_transformers import SentenceTransformer
40
 
41
- model = SentenceTransformer("cornstack/CodeRankEmbed", trust_remote_code=True)
42
  queries = ['Represent this query for searching relevant code: Calculate the n-th factorial']
43
  codes = ['def fact(n):\n if n < 0:\n raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
44
  query_embeddings = model.encode(queries)
 
10
 
11
  `CodeRankEmbed` is a 137M bi-encoder supporting 8192 context length for code retrieval. It significantly outperforms various open-source and proprietary code embedding models on various code retrieval tasks.
12
 
13
+ Check out our [blog post](https://gangiswag.github.io/cornstack/) and [paper](https://arxiv.org/pdf/2412.01007) for more details!
14
 
15
  Combine `CodeRankEmbed` with our re-ranker [`CodeRankLLM`](https://huggingface.co/cornstack/CodeRankLLM) for even higher quality code retrieval.
16
 
 
38
  ```python
39
  from sentence_transformers import SentenceTransformer
40
 
41
+ model = SentenceTransformer("nomic-ai/CodeRankEmbed", trust_remote_code=True)
42
  queries = ['Represent this query for searching relevant code: Calculate the n-th factorial']
43
  codes = ['def fact(n):\n if n < 0:\n raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
44
  query_embeddings = model.encode(queries)