noneUsername commited on
Commit
524de1f
·
verified ·
1 Parent(s): 18e15bc

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/autodl-tmp/Orca-2-13b",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoModel": "modeling_llama.LlamaForCausalLM",
10
+ "AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "fp16": true,
15
+ "head_dim": 128,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 5120,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 13824,
20
+ "max_position_embeddings": 4096,
21
+ "mlp_bias": false,
22
+ "model_type": "llama",
23
+ "num_attention_heads": 40,
24
+ "num_hidden_layers": 40,
25
+ "num_key_value_heads": 40,
26
+ "pad_token_id": 0,
27
+ "pretraining_tp": 1,
28
+ "quantization_config": {
29
+ "quant_method": "smooth_quant"
30
+ },
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 10000.0,
34
+ "tie_word_embeddings": false,
35
+ "torch_dtype": "float16",
36
+ "transformers_version": "4.45.2",
37
+ "use_cache": false,
38
+ "vocab_size": 32003
39
+ }
.ipynb_checkpoints/tokenizer_config-checkpoint.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|im_start|>",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32002": {
47
+ "content": "<|im_end|>",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ }
54
+ },
55
+ "bos_token": "<s>",
56
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
57
+ "clean_up_tokenization_spaces": false,
58
+ "eos_token": "</s>",
59
+ "legacy": false,
60
+ "model_max_length": 4096,
61
+ "pad_token": "[PAD]",
62
+ "padding_side": "right",
63
+ "sp_model_kwargs": {},
64
+ "spaces_between_special_tokens": false,
65
+ "tokenizer_class": "LlamaTokenizer",
66
+ "unk_token": "<unk>",
67
+ "use_default_system_prompt": true
68
+ }
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|im_end|>": 32002,
3
+ "<|im_start|>": 32001,
4
+ "[PAD]": 32000
5
+ }
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/autodl-tmp/Orca-2-13b",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoModel": "modeling_llama.LlamaForCausalLM",
10
+ "AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "fp16": true,
15
+ "head_dim": 128,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 5120,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 13824,
20
+ "max_position_embeddings": 4096,
21
+ "mlp_bias": false,
22
+ "model_type": "llama",
23
+ "num_attention_heads": 40,
24
+ "num_hidden_layers": 40,
25
+ "num_key_value_heads": 40,
26
+ "pad_token_id": 0,
27
+ "pretraining_tp": 1,
28
+ "quantization_config": {
29
+ "quant_method": "smooth_quant"
30
+ },
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 10000.0,
34
+ "tie_word_embeddings": false,
35
+ "torch_dtype": "float16",
36
+ "transformers_version": "4.45.2",
37
+ "use_cache": false,
38
+ "vocab_size": 32003
39
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 4096,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.45.2"
7
+ }
inputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b2a437a7155e3626dffd995ebebe6f00574ee9afee230c534b73fb4aa7ae81b
3
+ size 18211582
modeling_llama.py ADDED
@@ -0,0 +1,1297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
4
+ # and OPT implementations in this library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared
6
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """PyTorch LLaMA model."""
20
+ import math
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+ from transformers.activations import ACT2FN
29
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
30
+ CausalLMOutputWithPast,
31
+ SequenceClassifierOutputWithPast)
32
+ from transformers.modeling_utils import PreTrainedModel
33
+ from transformers.models.llama.configuration_llama import LlamaConfig
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward,
36
+ replace_return_docstrings)
37
+
38
+ from lmdeploy.pytorch.modeling.convert_to_qmodules import convert_to_qmodules
39
+ from lmdeploy.utils import get_logger
40
+
41
+ logger = get_logger('lmdeploy')
42
+
43
+ _CONFIG_FOR_DOC = 'LlamaConfig'
44
+
45
+
46
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
47
+ def _make_causal_mask(input_ids_shape: torch.Size,
48
+ dtype: torch.dtype,
49
+ device: torch.device,
50
+ past_key_values_length: int = 0):
51
+ """Make causal mask used for bi-directional self-attention."""
52
+ bsz, tgt_len = input_ids_shape
53
+ mask = torch.full((tgt_len, tgt_len),
54
+ torch.finfo(dtype).min,
55
+ device=device)
56
+ mask_cond = torch.arange(mask.size(-1), device=device)
57
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
58
+ mask = mask.to(dtype)
59
+
60
+ if past_key_values_length > 0:
61
+ mask = torch.cat([
62
+ torch.zeros(
63
+ tgt_len, past_key_values_length, dtype=dtype, device=device),
64
+ mask
65
+ ],
66
+ dim=-1)
67
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len,
68
+ tgt_len + past_key_values_length)
69
+
70
+
71
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
72
+ def _expand_mask(mask: torch.Tensor,
73
+ dtype: torch.dtype,
74
+ tgt_len: Optional[int] = None):
75
+ """Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len,
76
+ src_seq_len]`."""
77
+ bsz, src_len = mask.size()
78
+ tgt_len = tgt_len if tgt_len is not None else src_len
79
+
80
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len,
81
+ src_len).to(dtype)
82
+
83
+ inverted_mask = 1.0 - expanded_mask
84
+
85
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool),
86
+ torch.finfo(dtype).min)
87
+
88
+
89
+ class LlamaRMSNorm(nn.Module):
90
+
91
+ def __init__(self, hidden_size, eps=1e-6):
92
+ """LlamaRMSNorm is equivalent to T5LayerNorm."""
93
+ super().__init__()
94
+ self.weight = nn.Parameter(torch.ones(hidden_size))
95
+ self.variance_epsilon = eps
96
+
97
+ def forward(self, hidden_states):
98
+ input_dtype = hidden_states.dtype
99
+ hidden_states = hidden_states.to(torch.float32)
100
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
101
+ hidden_states = hidden_states * torch.rsqrt(variance +
102
+ self.variance_epsilon)
103
+ return self.weight * hidden_states.to(input_dtype)
104
+
105
+
106
+ class LlamaRotaryEmbedding(torch.nn.Module):
107
+ """RotaryEmbedding for Llama Model.
108
+
109
+ This module generates sine and cosine positional encodings based on
110
+ the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding".
111
+ The purpose of this class is to provide positional embeddings to the
112
+ input tensors. It utilizes a cache mechanism to store precomputed
113
+ sine and cosine values for speedup.
114
+
115
+ Args:
116
+ dim (int): The dimensionality of the embeddings.
117
+ max_position_embeddings (int, optional): The maximum number of
118
+ position embeddings. Default is 2048.
119
+ base (int, optional): The base value for the inverse frequency
120
+ calculation. Default is 10000.
121
+ device (str, optional): The device to run operations on.
122
+ If None, defaults to the device of the model.
123
+ """
124
+
125
+ def __init__(self,
126
+ dim,
127
+ max_position_embeddings=2048,
128
+ base=10000,
129
+ device=None):
130
+ super().__init__()
131
+
132
+ self.dim = dim
133
+ self.max_position_embeddings = max_position_embeddings
134
+ self.base = base
135
+ inv_freq = 1.0 / (self.base**(
136
+ torch.arange(0, self.dim, 2).float().to(device) / self.dim))
137
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
138
+
139
+ # Build here to make `torch.jit.trace` work.
140
+ self._set_cos_sin_cache(seq_len=max_position_embeddings,
141
+ device=self.inv_freq.device,
142
+ dtype=torch.get_default_dtype())
143
+
144
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
145
+ """Sets the cached sine and cosine values for the specified sequence
146
+ length.
147
+
148
+ Args:
149
+ seq_len (int): The sequence length for which to set the cache.
150
+ device (str): The device to use for computation.
151
+ dtype (torch.dtype): The data type to be used for tensors.
152
+ """
153
+ self.max_seq_len_cached = seq_len
154
+ t = torch.arange(self.max_seq_len_cached,
155
+ device=device,
156
+ dtype=self.inv_freq.dtype)
157
+
158
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
159
+ # Different from paper, but it uses a different permutation in order
160
+ # to obtain the same calculation
161
+ emb = torch.cat((freqs, freqs), dim=-1)
162
+ self.register_buffer('cos_cached',
163
+ emb.cos()[None, None, :, :].to(dtype),
164
+ persistent=False)
165
+ self.register_buffer('sin_cached',
166
+ emb.sin()[None, None, :, :].to(dtype),
167
+ persistent=False)
168
+
169
+ def forward(self, x, seq_len=None):
170
+ """Forward propagation method for the embedding layer. Generates
171
+ positional embeddings for the given input tensor.
172
+
173
+ If the sequence length is larger than the cache, it resets the cache.
174
+
175
+ Args:
176
+ x (torch.Tensor): Input tensor of shape
177
+ [batch_size, num_attention_heads, seq_len, head_size].
178
+ seq_len (int, optional): Sequence length. If None, it is obtained
179
+ from `x`.
180
+
181
+ Returns:
182
+ tuple: Tuple containing cosine and sine positional embeddings.
183
+ """
184
+ # x: [bs, num_attention_heads, seq_len, head_size]
185
+ if seq_len > self.max_seq_len_cached:
186
+ self._set_cos_sin_cache(seq_len=seq_len,
187
+ device=x.device,
188
+ dtype=x.dtype)
189
+
190
+ return (
191
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
192
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
193
+ )
194
+
195
+
196
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
197
+ """This class extends the `LlamaRotaryEmbedding` with linear scaling.
198
+
199
+ It provides a mechanism for adjusting the scale of the positional
200
+ embeddings by dividing the tensor generated by the range of sequence length
201
+ with a scaling factor. This is useful when dealing with sequences of
202
+ varying lengths.
203
+
204
+ Credits to Reddit User /u/kaiokendev for this extension.
205
+
206
+ Args:
207
+ dim (int): The dimensionality of the embeddings.
208
+ max_position_embeddings (int, optional): The maximum number of
209
+ position embeddings. Default is 2048.
210
+ base (int, optional): The base value for the inverse frequency
211
+ calculation. Default is 10000.
212
+ device (str, optional): The device to run operations on. If None,
213
+ defaults to the device of the model.
214
+ scaling_factor (float, optional): Scaling factor used in adjusting
215
+ the scale of positional embeddings. Default is 1.0.
216
+ """
217
+
218
+ def __init__(self,
219
+ dim,
220
+ max_position_embeddings=2048,
221
+ base=10000,
222
+ device=None,
223
+ scaling_factor=1.0):
224
+ self.scaling_factor = scaling_factor
225
+ super().__init__(dim, max_position_embeddings, base, device)
226
+
227
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
228
+ """Sets the cached sine and cosine values for the specified sequence
229
+ length.
230
+
231
+ Args:
232
+ seq_len (int): The sequence length for which to set the cache.
233
+ device (str): The device to use for computation.
234
+ dtype (torch.dtype): The data type to use for tensors.
235
+ """
236
+ self.max_seq_len_cached = seq_len
237
+ t = torch.arange(self.max_seq_len_cached,
238
+ device=device,
239
+ dtype=self.inv_freq.dtype)
240
+ t = t / self.scaling_factor
241
+
242
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
243
+ # Different from paper, but it uses a different permutation in order
244
+ # to obtain the same calculation
245
+ emb = torch.cat((freqs, freqs), dim=-1)
246
+ self.register_buffer('cos_cached',
247
+ emb.cos()[None, None, :, :].to(dtype),
248
+ persistent=False)
249
+ self.register_buffer('sin_cached',
250
+ emb.sin()[None, None, :, :].to(dtype),
251
+ persistent=False)
252
+
253
+
254
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
255
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling.
256
+
257
+ Credits to the Reddit users /u/bloc97 and /u/emozilla
258
+ """
259
+
260
+ def __init__(self,
261
+ dim,
262
+ max_position_embeddings=2048,
263
+ base=10000,
264
+ device=None,
265
+ scaling_factor=1.0):
266
+ self.scaling_factor = scaling_factor
267
+ super().__init__(dim, max_position_embeddings, base, device)
268
+
269
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
270
+ self.max_seq_len_cached = seq_len
271
+
272
+ if seq_len > self.max_position_embeddings:
273
+ base = self.base * ((self.scaling_factor * seq_len /
274
+ self.max_position_embeddings) -
275
+ (self.scaling_factor - 1))**(self.dim /
276
+ (self.dim - 2))
277
+ inv_freq = 1.0 / (base**(
278
+ torch.arange(0, self.dim, 2).float().to(device) / self.dim))
279
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
280
+
281
+ t = torch.arange(self.max_seq_len_cached,
282
+ device=device,
283
+ dtype=self.inv_freq.dtype)
284
+
285
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
286
+ # Different from paper, but it uses a different permutation in order
287
+ # to obtain the same calculation
288
+ emb = torch.cat((freqs, freqs), dim=-1)
289
+ self.register_buffer('cos_cached',
290
+ emb.cos()[None, None, :, :].to(dtype),
291
+ persistent=False)
292
+ self.register_buffer('sin_cached',
293
+ emb.sin()[None, None, :, :].to(dtype),
294
+ persistent=False)
295
+
296
+
297
+ def rotate_half(x):
298
+ """Rotates half the hidden dims of the input."""
299
+ x1 = x[..., :x.shape[-1] // 2]
300
+ x2 = x[..., x.shape[-1] // 2:]
301
+ return torch.cat((-x2, x1), dim=-1)
302
+
303
+
304
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
305
+ """Apply rotary positional embeddings to query and key tensors.
306
+
307
+ This function applies the cosine and sine positional embeddings on the
308
+ input query (q) and key (k) tensors using element-wise multiplication and
309
+ addition.
310
+ """
311
+ # The first two dimensions of cos and sin are always 1,
312
+ # so we can `squeeze` them.
313
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
314
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
315
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
316
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
317
+ q_embed = (q * cos) + (rotate_half(q) * sin)
318
+ k_embed = (k * cos) + (rotate_half(k) * sin)
319
+ return q_embed, k_embed
320
+
321
+
322
+ class LlamaMLP(nn.Module):
323
+ """MLP for Llama Model."""
324
+
325
+ def __init__(self, config):
326
+ super().__init__()
327
+ self.config = config
328
+ self.hidden_size = config.hidden_size
329
+ self.intermediate_size = config.intermediate_size
330
+ self.gate_proj = nn.Linear(self.hidden_size,
331
+ self.intermediate_size,
332
+ bias=False)
333
+ self.up_proj = nn.Linear(self.hidden_size,
334
+ self.intermediate_size,
335
+ bias=False)
336
+ self.down_proj = nn.Linear(self.intermediate_size,
337
+ self.hidden_size,
338
+ bias=False)
339
+ self.act_fn = ACT2FN[config.hidden_act]
340
+
341
+ def forward(self, x):
342
+ if self.config.pretraining_tp > 1:
343
+ slice = self.intermediate_size // self.config.pretraining_tp
344
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
345
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
346
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
347
+
348
+ gate_proj = torch.cat([
349
+ F.linear(x, gate_proj_slices[i])
350
+ for i in range(self.config.pretraining_tp)
351
+ ],
352
+ dim=-1)
353
+ up_proj = torch.cat([
354
+ F.linear(x, up_proj_slices[i])
355
+ for i in range(self.config.pretraining_tp)
356
+ ],
357
+ dim=-1)
358
+
359
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(
360
+ slice, dim=2)
361
+ down_proj = [
362
+ F.linear(intermediate_states[i], down_proj_slices[i])
363
+ for i in range(self.config.pretraining_tp)
364
+ ]
365
+ down_proj = sum(down_proj)
366
+ else:
367
+ down_proj = self.down_proj(
368
+ self.act_fn(self.gate_proj(x)) * self.up_proj(x))
369
+
370
+ return down_proj
371
+
372
+
373
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
374
+ """This is the equivalent of torch.repeat_interleave(x, dim=1,
375
+ repeats=n_rep).
376
+
377
+ The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
378
+ (batch, num_attention_heads, seqlen, head_dim)
379
+ """
380
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
381
+ if n_rep == 1:
382
+ return hidden_states
383
+ hidden_states = hidden_states[:, :,
384
+ None, :, :].expand(batch,
385
+ num_key_value_heads,
386
+ n_rep, slen, head_dim)
387
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
388
+ head_dim)
389
+
390
+
391
+ class LlamaAttention(nn.Module):
392
+ """Multi-headed attention from 'Attention Is All You Need' paper."""
393
+
394
+ def __init__(self, config: LlamaConfig):
395
+ super().__init__()
396
+ self.config = config
397
+ self.hidden_size = config.hidden_size
398
+ self.num_heads = config.num_attention_heads
399
+ self.head_dim = self.hidden_size // self.num_heads
400
+ self.num_key_value_heads = config.num_key_value_heads
401
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
402
+ self.max_position_embeddings = config.max_position_embeddings
403
+ self.rope_theta = config.rope_theta
404
+
405
+ if (self.head_dim * self.num_heads) != self.hidden_size:
406
+ raise ValueError('hidden_size must be divisible by num_heads '
407
+ f'(got `hidden_size`: {self.hidden_size}'
408
+ f' and `num_heads`: {self.num_heads}).')
409
+ self.q_proj = nn.Linear(self.hidden_size,
410
+ self.num_heads * self.head_dim,
411
+ bias=False)
412
+ self.k_proj = nn.Linear(self.hidden_size,
413
+ self.num_key_value_heads * self.head_dim,
414
+ bias=False)
415
+ self.v_proj = nn.Linear(self.hidden_size,
416
+ self.num_key_value_heads * self.head_dim,
417
+ bias=False)
418
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim,
419
+ self.hidden_size,
420
+ bias=False)
421
+ self._init_rope()
422
+
423
+ def _init_rope(self):
424
+ """Initialize the Rotary Embedding Module."""
425
+ if self.config.rope_scaling is None:
426
+ self.rotary_emb = LlamaRotaryEmbedding(
427
+ self.head_dim,
428
+ max_position_embeddings=self.max_position_embeddings,
429
+ base=self.rope_theta,
430
+ )
431
+ else:
432
+ scaling_type = self.config.rope_scaling['type']
433
+ scaling_factor = self.config.rope_scaling['factor']
434
+ if scaling_type == 'linear':
435
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
436
+ self.head_dim,
437
+ max_position_embeddings=self.max_position_embeddings,
438
+ scaling_factor=scaling_factor,
439
+ base=self.rope_theta,
440
+ )
441
+ elif scaling_type == 'dynamic':
442
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
443
+ self.head_dim,
444
+ max_position_embeddings=self.max_position_embeddings,
445
+ scaling_factor=scaling_factor,
446
+ base=self.rope_theta,
447
+ )
448
+ else:
449
+ raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
450
+
451
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
452
+ return tensor.view(bsz, seq_len, self.num_heads,
453
+ self.head_dim).transpose(1, 2).contiguous()
454
+
455
+ def forward(
456
+ self,
457
+ hidden_states: torch.Tensor,
458
+ attention_mask: Optional[torch.Tensor] = None,
459
+ position_ids: Optional[torch.LongTensor] = None,
460
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
461
+ output_attentions: bool = False,
462
+ use_cache: bool = False,
463
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
464
+ Optional[Tuple[torch.Tensor]]]:
465
+ """Forward propagation method for the attention layer."""
466
+ bsz, q_len, _ = hidden_states.size()
467
+
468
+ if self.config.pretraining_tp > 1:
469
+ key_value_slicing = (self.num_key_value_heads *
470
+ self.head_dim) // self.config.pretraining_tp
471
+ query_slices = self.q_proj.weight.split(
472
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp,
473
+ dim=0)
474
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
475
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
476
+
477
+ query_states = [
478
+ F.linear(hidden_states, query_slices[i])
479
+ for i in range(self.config.pretraining_tp)
480
+ ]
481
+ query_states = torch.cat(query_states, dim=-1)
482
+
483
+ key_states = [
484
+ F.linear(hidden_states, key_slices[i])
485
+ for i in range(self.config.pretraining_tp)
486
+ ]
487
+ key_states = torch.cat(key_states, dim=-1)
488
+
489
+ value_states = [
490
+ F.linear(hidden_states, value_slices[i])
491
+ for i in range(self.config.pretraining_tp)
492
+ ]
493
+ value_states = torch.cat(value_states, dim=-1)
494
+
495
+ else:
496
+ query_states = self.q_proj(hidden_states)
497
+ key_states = self.k_proj(hidden_states)
498
+ value_states = self.v_proj(hidden_states)
499
+
500
+ query_states = query_states.view(bsz, q_len, self.num_heads,
501
+ self.head_dim).transpose(1, 2)
502
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
503
+ self.head_dim).transpose(1, 2)
504
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
505
+ self.head_dim).transpose(1, 2)
506
+
507
+ kv_seq_len = key_states.shape[-2]
508
+ if past_key_value is not None:
509
+ kv_seq_len += past_key_value[0].shape[-2]
510
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
511
+ query_states, key_states = apply_rotary_pos_emb(
512
+ query_states, key_states, cos, sin, position_ids)
513
+
514
+ if past_key_value is not None:
515
+ # reuse k, v, self_attention
516
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
517
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
518
+
519
+ past_key_value = (key_states, value_states) if use_cache else None
520
+
521
+ # repeat k/v heads if n_kv_heads < n_heads
522
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
523
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
524
+
525
+ attn_weights = torch.matmul(query_states, key_states.transpose(
526
+ 2, 3)) / math.sqrt(self.head_dim)
527
+
528
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
529
+ raise ValueError(
530
+ 'Attention weights should be of size '
531
+ f'{(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
532
+ f' {attn_weights.size()}')
533
+
534
+ if attention_mask is not None:
535
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
536
+ raise ValueError('Attention mask should be of size '
537
+ f'{(bsz, 1, q_len, kv_seq_len)}, '
538
+ f'but is {attention_mask.size()}')
539
+ attn_weights = attn_weights + attention_mask
540
+
541
+ # upcast attention to fp32
542
+ attn_weights = nn.functional.softmax(attn_weights,
543
+ dim=-1,
544
+ dtype=torch.float32).to(
545
+ query_states.dtype)
546
+ attn_output = torch.matmul(attn_weights, value_states)
547
+
548
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
549
+ raise ValueError(
550
+ '`attn_output` should be of size '
551
+ f'{(bsz, self.num_heads, q_len, self.head_dim)}, but is'
552
+ f' {attn_output.size()}')
553
+
554
+ attn_output = attn_output.transpose(1, 2).contiguous()
555
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
556
+
557
+ if self.config.pretraining_tp > 1:
558
+ attn_output = attn_output.split(self.hidden_size //
559
+ self.config.pretraining_tp,
560
+ dim=2)
561
+ o_proj_slices = self.o_proj.weight.split(
562
+ self.hidden_size // self.config.pretraining_tp, dim=1)
563
+ attn_output = sum([
564
+ F.linear(attn_output[i], o_proj_slices[i])
565
+ for i in range(self.config.pretraining_tp)
566
+ ])
567
+ else:
568
+ attn_output = self.o_proj(attn_output)
569
+
570
+ if not output_attentions:
571
+ attn_weights = None
572
+
573
+ return attn_output, attn_weights, past_key_value
574
+
575
+
576
+ class LlamaDecoderLayer(nn.Module):
577
+ """Decoder layer for Llama Model."""
578
+
579
+ def __init__(self, config: LlamaConfig):
580
+ super().__init__()
581
+ self.hidden_size = config.hidden_size
582
+ self.self_attn = LlamaAttention(config=config)
583
+ self.mlp = LlamaMLP(config)
584
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size,
585
+ eps=config.rms_norm_eps)
586
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size,
587
+ eps=config.rms_norm_eps)
588
+
589
+ def forward(
590
+ self,
591
+ hidden_states: torch.Tensor,
592
+ attention_mask: Optional[torch.Tensor] = None,
593
+ position_ids: Optional[torch.LongTensor] = None,
594
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
595
+ output_attentions: Optional[bool] = False,
596
+ use_cache: Optional[bool] = False,
597
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
598
+ torch.FloatTensor]]]:
599
+ """
600
+ Args:
601
+ hidden_states (`torch.FloatTensor`): input to the layer of shape
602
+ `(batch, seq_len, embed_dim)`
603
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask
604
+ of size `(batch, 1, tgt_len, src_len)` where padding elements
605
+ are indicated by very large negative values.
606
+ output_attentions (`bool`, *optional*):
607
+ Whether or not to return the attentions tensors of all
608
+ attention layers. See `attentions` under
609
+ returned tensors for more detail.
610
+ use_cache (`bool`, *optional*):
611
+ If set to `True`, `past_key_values` key value states are
612
+ returned and can be used to speed up decoding
613
+ (see `past_key_values`).
614
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached
615
+ past key and value projection states
616
+ """
617
+
618
+ residual = hidden_states
619
+
620
+ hidden_states = self.input_layernorm(hidden_states)
621
+
622
+ # Self Attention
623
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
624
+ hidden_states=hidden_states,
625
+ attention_mask=attention_mask,
626
+ position_ids=position_ids,
627
+ past_key_value=past_key_value,
628
+ output_attentions=output_attentions,
629
+ use_cache=use_cache,
630
+ )
631
+ hidden_states = residual + hidden_states
632
+
633
+ # Fully Connected
634
+ residual = hidden_states
635
+ hidden_states = self.post_attention_layernorm(hidden_states)
636
+ hidden_states = self.mlp(hidden_states)
637
+ hidden_states = residual + hidden_states
638
+
639
+ outputs = (hidden_states, )
640
+
641
+ if output_attentions:
642
+ outputs += (self_attn_weights, )
643
+
644
+ if use_cache:
645
+ outputs += (present_key_value, )
646
+
647
+ return outputs
648
+
649
+
650
+ LLAMA_START_DOCSTRING = r""" # noqa: E501
651
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
652
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
653
+ etc.)
654
+
655
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
656
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
657
+ and behavior.
658
+
659
+ Parameters:
660
+ config ([`LlamaConfig`]):
661
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
662
+ load the weights associated with the model, only the configuration. Check out the
663
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
664
+ """
665
+
666
+
667
+ @add_start_docstrings(
668
+ 'The bare LLaMA Model outputting raw hidden-states without any specific head on top.', # noqa: E501
669
+ LLAMA_START_DOCSTRING,
670
+ )
671
+ class LlamaPreTrainedModel(PreTrainedModel):
672
+ config_class = LlamaConfig
673
+ base_model_prefix = 'model'
674
+ supports_gradient_checkpointing = True
675
+ _no_split_modules = ['LlamaDecoderLayer']
676
+ _skip_keys_device_placement = 'past_key_values'
677
+
678
+ def _init_weights(self, module):
679
+ std = self.config.initializer_range
680
+ if isinstance(module, nn.Linear):
681
+ module.weight.data.normal_(mean=0.0, std=std)
682
+ if module.bias is not None:
683
+ module.bias.data.zero_()
684
+ elif isinstance(module, nn.Embedding):
685
+ module.weight.data.normal_(mean=0.0, std=std)
686
+ if module.padding_idx is not None:
687
+ module.weight.data[module.padding_idx].zero_()
688
+
689
+ def _set_gradient_checkpointing(self, module, value=False):
690
+ if isinstance(module, LlamaModel):
691
+ module.gradient_checkpointing = value
692
+
693
+
694
+ LLAMA_INPUTS_DOCSTRING = r""" # noqa: E501
695
+ Args:
696
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
697
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
698
+ it.
699
+
700
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
701
+ [`PreTrainedTokenizer.__call__`] for details.
702
+
703
+ [What are input IDs?](../glossary#input-ids)
704
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
705
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
706
+
707
+ - 1 for tokens that are **not masked**,
708
+ - 0 for tokens that are **masked**.
709
+
710
+ [What are attention masks?](../glossary#attention-mask)
711
+
712
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
713
+ [`PreTrainedTokenizer.__call__`] for details.
714
+
715
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
716
+ `past_key_values`).
717
+
718
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
719
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
720
+ information on the default strategy.
721
+
722
+ - 1 indicates the head is **not masked**,
723
+ - 0 indicates the head is **masked**.
724
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
725
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
726
+ config.n_positions - 1]`.
727
+
728
+ [What are position IDs?](../glossary#position-ids)
729
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
730
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
731
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
732
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
733
+
734
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
735
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
736
+
737
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
738
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
739
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
740
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
741
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
742
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
743
+ model's internal embedding lookup matrix.
744
+ use_cache (`bool`, *optional*):
745
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
746
+ `past_key_values`).
747
+ output_attentions (`bool`, *optional*):
748
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
749
+ tensors for more detail.
750
+ output_hidden_states (`bool`, *optional*):
751
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
752
+ more detail.
753
+ return_dict (`bool`, *optional*):
754
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
755
+ """
756
+
757
+
758
+ @add_start_docstrings(
759
+ 'The bare LLaMA Model outputting raw hidden-states without any specific head on top.', # noqa: E501
760
+ LLAMA_START_DOCSTRING,
761
+ )
762
+ class LlamaModel(LlamaPreTrainedModel):
763
+ """Transformer decoder consisting of *config.num_hidden_layers* layers.
764
+ Each layer is a [`LlamaDecoderLayer`]
765
+
766
+ Args:
767
+ config: LlamaConfig
768
+ """
769
+
770
+ def __init__(self, config: LlamaConfig):
771
+ super().__init__(config)
772
+ self.padding_idx = config.pad_token_id
773
+ self.vocab_size = config.vocab_size
774
+
775
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size,
776
+ self.padding_idx)
777
+ self.layers = nn.ModuleList([
778
+ LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)
779
+ ])
780
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
781
+
782
+ self.gradient_checkpointing = False
783
+ # Initialize weights and apply final processing
784
+ self.post_init()
785
+
786
+ def get_input_embeddings(self):
787
+ return self.embed_tokens
788
+
789
+ def set_input_embeddings(self, value):
790
+ self.embed_tokens = value
791
+
792
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask # noqa
793
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
794
+ inputs_embeds, past_key_values_length):
795
+ # create causal mask
796
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
797
+ combined_attention_mask = None
798
+ if input_shape[-1] > 1:
799
+ combined_attention_mask = _make_causal_mask(
800
+ input_shape,
801
+ inputs_embeds.dtype,
802
+ device=inputs_embeds.device,
803
+ past_key_values_length=past_key_values_length,
804
+ )
805
+
806
+ if attention_mask is not None:
807
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
808
+ expanded_attn_mask = _expand_mask(attention_mask,
809
+ inputs_embeds.dtype,
810
+ tgt_len=input_shape[-1]).to(
811
+ inputs_embeds.device)
812
+ combined_attention_mask = (expanded_attn_mask
813
+ if combined_attention_mask is None else
814
+ expanded_attn_mask +
815
+ combined_attention_mask)
816
+
817
+ return combined_attention_mask
818
+
819
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
820
+ def forward(
821
+ self,
822
+ input_ids: torch.LongTensor = None,
823
+ attention_mask: Optional[torch.Tensor] = None,
824
+ position_ids: Optional[torch.LongTensor] = None,
825
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
826
+ inputs_embeds: Optional[torch.FloatTensor] = None,
827
+ use_cache: Optional[bool] = None,
828
+ output_attentions: Optional[bool] = None,
829
+ output_hidden_states: Optional[bool] = None,
830
+ return_dict: Optional[bool] = None,
831
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
832
+ output_attentions = (output_attentions if output_attentions is not None
833
+ else self.config.output_attentions)
834
+ output_hidden_states = (output_hidden_states
835
+ if output_hidden_states is not None else
836
+ self.config.output_hidden_states)
837
+ use_cache = (use_cache
838
+ if use_cache is not None else self.config.use_cache)
839
+
840
+ return_dict = (return_dict if return_dict is not None else
841
+ self.config.use_return_dict)
842
+
843
+ # retrieve input_ids and inputs_embeds
844
+ if input_ids is not None and inputs_embeds is not None:
845
+ raise ValueError('You cannot specify both decoder_input_ids'
846
+ 'and decoder_inputs_embeds at the same time')
847
+ elif input_ids is not None:
848
+ batch_size, seq_length = input_ids.shape
849
+ elif inputs_embeds is not None:
850
+ batch_size, seq_length, _ = inputs_embeds.shape
851
+ else:
852
+ raise ValueError('You have to specify either decoder_input_ids'
853
+ 'or decoder_inputs_embeds')
854
+
855
+ seq_length_with_past = seq_length
856
+ past_key_values_length = 0
857
+
858
+ if past_key_values is not None:
859
+ past_key_values_length = past_key_values[0][0].shape[2]
860
+ seq_length_with_past = (seq_length_with_past +
861
+ past_key_values_length)
862
+
863
+ if position_ids is None:
864
+ device = (input_ids.device
865
+ if input_ids is not None else inputs_embeds.device)
866
+ position_ids = torch.arange(past_key_values_length,
867
+ seq_length + past_key_values_length,
868
+ dtype=torch.long,
869
+ device=device)
870
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
871
+ else:
872
+ position_ids = position_ids.view(-1, seq_length).long()
873
+
874
+ if inputs_embeds is None:
875
+ inputs_embeds = self.embed_tokens(input_ids)
876
+ # embed positions
877
+ if attention_mask is None:
878
+ attention_mask = torch.ones((batch_size, seq_length_with_past),
879
+ dtype=torch.bool,
880
+ device=inputs_embeds.device)
881
+ attention_mask = self._prepare_decoder_attention_mask(
882
+ attention_mask, (batch_size, seq_length), inputs_embeds,
883
+ past_key_values_length)
884
+
885
+ hidden_states = inputs_embeds
886
+
887
+ if self.gradient_checkpointing and self.training:
888
+ if use_cache:
889
+ logger.warning_once(
890
+ '`use_cache=True` is incompatible with gradient'
891
+ ' checkpointing. Setting `use_cache=False`...')
892
+ use_cache = False
893
+
894
+ # decoder layers
895
+ all_hidden_states = () if output_hidden_states else None
896
+ all_self_attns = () if output_attentions else None
897
+ next_decoder_cache = () if use_cache else None
898
+
899
+ for idx, decoder_layer in enumerate(self.layers):
900
+ if output_hidden_states:
901
+ all_hidden_states += (hidden_states, )
902
+
903
+ past_key_value = past_key_values[
904
+ idx] if past_key_values is not None else None
905
+
906
+ if self.gradient_checkpointing and self.training:
907
+
908
+ def create_custom_forward(module):
909
+
910
+ def custom_forward(*inputs):
911
+ # None for past_key_value
912
+ return module(*inputs, past_key_value,
913
+ output_attentions)
914
+
915
+ return custom_forward
916
+
917
+ layer_outputs = torch.utils.checkpoint.checkpoint(
918
+ create_custom_forward(decoder_layer),
919
+ hidden_states,
920
+ attention_mask,
921
+ position_ids,
922
+ )
923
+ else:
924
+ layer_outputs = decoder_layer(
925
+ hidden_states,
926
+ attention_mask=attention_mask,
927
+ position_ids=position_ids,
928
+ past_key_value=past_key_value,
929
+ output_attentions=output_attentions,
930
+ use_cache=use_cache,
931
+ )
932
+
933
+ hidden_states = layer_outputs[0]
934
+
935
+ if use_cache:
936
+ next_decoder_cache += (
937
+ layer_outputs[2 if output_attentions else 1], )
938
+
939
+ if output_attentions:
940
+ all_self_attns += (layer_outputs[1], )
941
+
942
+ hidden_states = self.norm(hidden_states)
943
+
944
+ # add hidden states from the last decoder layer
945
+ if output_hidden_states:
946
+ all_hidden_states += (hidden_states, )
947
+
948
+ next_cache = next_decoder_cache if use_cache else None
949
+ if not return_dict:
950
+ return tuple(
951
+ v for v in
952
+ [hidden_states, next_cache, all_hidden_states, all_self_attns]
953
+ if v is not None)
954
+ return BaseModelOutputWithPast(
955
+ last_hidden_state=hidden_states,
956
+ past_key_values=next_cache,
957
+ hidden_states=all_hidden_states,
958
+ attentions=all_self_attns,
959
+ )
960
+
961
+
962
+ class LlamaForCausalLM(LlamaPreTrainedModel):
963
+ """This class extends the `LlamaPreTrainedModel` to enable causal language
964
+ modeling.
965
+
966
+ It wraps the basic Llama model (`LlamaModel`) and includes a linear layer
967
+ as a language model head (`lm_head`). The purpose is to predict token
968
+ probabilities, given the previous tokens in the sequence.
969
+ """
970
+ _tied_weights_keys = ['lm_head.weight']
971
+
972
+ def __init__(self, config):
973
+ super().__init__(config)
974
+ self.model = LlamaModel(config)
975
+ self.vocab_size = config.vocab_size
976
+ self.lm_head = nn.Linear(config.hidden_size,
977
+ config.vocab_size,
978
+ bias=False)
979
+
980
+ # Initialize weights and apply final processing
981
+ self.post_init()
982
+ convert_to_qmodules(self)
983
+
984
+ def get_input_embeddings(self):
985
+ """Get the token embedding layer."""
986
+ return self.model.embed_tokens
987
+
988
+ def set_input_embeddings(self, value):
989
+ """Set the token embedding layer."""
990
+ self.model.embed_tokens = value
991
+
992
+ def get_output_embeddings(self):
993
+ """Get the output embedding layer."""
994
+ return self.lm_head
995
+
996
+ def set_output_embeddings(self, new_embeddings):
997
+ """Set the output embedding layer."""
998
+ self.lm_head = new_embeddings
999
+
1000
+ def set_decoder(self, decoder):
1001
+ """Set the decoder model."""
1002
+ self.model = decoder
1003
+
1004
+ def get_decoder(self):
1005
+ """Get the decoder model."""
1006
+ return self.model
1007
+
1008
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1009
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast,
1010
+ config_class=_CONFIG_FOR_DOC)
1011
+ def forward(
1012
+ self,
1013
+ input_ids: torch.LongTensor = None,
1014
+ attention_mask: Optional[torch.Tensor] = None,
1015
+ position_ids: Optional[torch.LongTensor] = None,
1016
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1017
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1018
+ labels: Optional[torch.LongTensor] = None,
1019
+ use_cache: Optional[bool] = None,
1020
+ output_attentions: Optional[bool] = None,
1021
+ output_hidden_states: Optional[bool] = None,
1022
+ return_dict: Optional[bool] = None,
1023
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1024
+ r""" # noqa: E501
1025
+ Args:
1026
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1027
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1028
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1029
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1030
+
1031
+ Returns:
1032
+
1033
+ Example:
1034
+
1035
+ ```python
1036
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1037
+
1038
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1039
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1040
+
1041
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1042
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1043
+
1044
+ >>> # Generate
1045
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1046
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1047
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1048
+ ```"""
1049
+
1050
+ output_attentions = (output_attentions if output_attentions is not None
1051
+ else self.config.output_attentions)
1052
+ output_hidden_states = (output_hidden_states
1053
+ if output_hidden_states is not None else
1054
+ self.config.output_hidden_states)
1055
+ return_dict = (return_dict if return_dict is not None else
1056
+ self.config.use_return_dict)
1057
+
1058
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) # noqa: E501
1059
+ outputs = self.model(
1060
+ input_ids=input_ids,
1061
+ attention_mask=attention_mask,
1062
+ position_ids=position_ids,
1063
+ past_key_values=past_key_values,
1064
+ inputs_embeds=inputs_embeds,
1065
+ use_cache=use_cache,
1066
+ output_attentions=output_attentions,
1067
+ output_hidden_states=output_hidden_states,
1068
+ return_dict=return_dict,
1069
+ )
1070
+
1071
+ hidden_states = outputs[0]
1072
+ if self.config.pretraining_tp > 1:
1073
+ lm_head_slices = self.lm_head.weight.split(
1074
+ self.vocab_size // self.config.pretraining_tp, dim=0)
1075
+ logits = [
1076
+ F.linear(hidden_states, lm_head_slices[i])
1077
+ for i in range(self.config.pretraining_tp)
1078
+ ]
1079
+ logits = torch.cat(logits, dim=-1)
1080
+ else:
1081
+ logits = self.lm_head(hidden_states)
1082
+ logits = logits.float()
1083
+
1084
+ loss = None
1085
+ if labels is not None:
1086
+ # Shift so that tokens < n predict n
1087
+ shift_logits = logits[..., :-1, :].contiguous()
1088
+ shift_labels = labels[..., 1:].contiguous()
1089
+ # Flatten the tokens
1090
+ loss_fct = CrossEntropyLoss()
1091
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1092
+ shift_labels = shift_labels.view(-1)
1093
+ # Enable model parallelism
1094
+ shift_labels = shift_labels.to(shift_logits.device)
1095
+ loss = loss_fct(shift_logits, shift_labels)
1096
+
1097
+ if not return_dict:
1098
+ output = (logits, ) + outputs[1:]
1099
+ return (loss, ) + output if loss is not None else output
1100
+
1101
+ return CausalLMOutputWithPast(
1102
+ loss=loss,
1103
+ logits=logits,
1104
+ past_key_values=outputs.past_key_values,
1105
+ hidden_states=outputs.hidden_states,
1106
+ attentions=outputs.attentions,
1107
+ )
1108
+
1109
+ def prepare_inputs_for_generation(self,
1110
+ input_ids,
1111
+ past_key_values=None,
1112
+ attention_mask=None,
1113
+ inputs_embeds=None,
1114
+ **kwargs):
1115
+ """Prepare inputs for generating sequences using the model.
1116
+
1117
+ Args:
1118
+ input_ids (torch.Tensor): Input token ids.
1119
+ past_key_values (list[torch.Tensor], optional): List of past key
1120
+ and value states.
1121
+ attention_mask (torch.Tensor, optional): Mask indicating which
1122
+ tokens should be attended to.
1123
+ inputs_embeds (torch.FloatTensor, optional): Optionally,
1124
+ the input embeddings instead of token ids.
1125
+
1126
+ Returns:
1127
+ dict: Dictionary containing prepared inputs for model generation.
1128
+ """
1129
+ if past_key_values:
1130
+ input_ids = input_ids[:, -1:]
1131
+
1132
+ position_ids = kwargs.get('position_ids', None)
1133
+ if attention_mask is not None and position_ids is None:
1134
+ # create position_ids on the fly for batch generation
1135
+ position_ids = attention_mask.long().cumsum(-1) - 1
1136
+ position_ids.masked_fill_(attention_mask == 0, 1)
1137
+ if past_key_values:
1138
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1139
+
1140
+ # if `inputs_embeds` are passed, we only want to use them
1141
+ # in the 1st generation step
1142
+ if inputs_embeds is not None and past_key_values is None:
1143
+ model_inputs = {'inputs_embeds': inputs_embeds}
1144
+ else:
1145
+ model_inputs = {'input_ids': input_ids}
1146
+
1147
+ model_inputs.update({
1148
+ 'position_ids': position_ids,
1149
+ 'past_key_values': past_key_values,
1150
+ 'use_cache': kwargs.get('use_cache'),
1151
+ 'attention_mask': attention_mask,
1152
+ })
1153
+ return model_inputs
1154
+
1155
+ @staticmethod
1156
+ def _reorder_cache(past_key_values, beam_idx):
1157
+ """Reorder cached past key-values during generation using beam search.
1158
+
1159
+ This function reorders the cached past key-values according to the
1160
+ given indices. It's useful in beam search where the order of hypotheses
1161
+ can change from one time-step to another.
1162
+ """
1163
+ reordered_past = ()
1164
+ for layer_past in past_key_values:
1165
+ reordered_past += (tuple(
1166
+ past_state.index_select(0, beam_idx.to(past_state.device))
1167
+ for past_state in layer_past), )
1168
+ return reordered_past
1169
+
1170
+
1171
+ @add_start_docstrings(
1172
+ """ # noqa: E501
1173
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1174
+
1175
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1176
+ (e.g. GPT-2) do.
1177
+
1178
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1179
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1180
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1181
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1182
+ each row of the batch).
1183
+ """,
1184
+ LLAMA_START_DOCSTRING,
1185
+ )
1186
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1187
+
1188
+ def __init__(self, config):
1189
+ super().__init__(config)
1190
+ self.num_labels = config.num_labels
1191
+ self.model = LlamaModel(config)
1192
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1193
+
1194
+ # Initialize weights and apply final processing
1195
+ self.post_init()
1196
+
1197
+ def get_input_embeddings(self):
1198
+ return self.model.embed_tokens
1199
+
1200
+ def set_input_embeddings(self, value):
1201
+ self.model.embed_tokens = value
1202
+
1203
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1204
+ def forward(
1205
+ self,
1206
+ input_ids: torch.LongTensor = None,
1207
+ attention_mask: Optional[torch.Tensor] = None,
1208
+ position_ids: Optional[torch.LongTensor] = None,
1209
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1210
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1211
+ labels: Optional[torch.LongTensor] = None,
1212
+ use_cache: Optional[bool] = None,
1213
+ output_attentions: Optional[bool] = None,
1214
+ output_hidden_states: Optional[bool] = None,
1215
+ return_dict: Optional[bool] = None,
1216
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1217
+ r""" # noqa: E501
1218
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1219
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1220
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1221
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1222
+ """
1223
+ return_dict = (return_dict if return_dict is not None else
1224
+ self.config.use_return_dict)
1225
+
1226
+ transformer_outputs = self.model(
1227
+ input_ids,
1228
+ attention_mask=attention_mask,
1229
+ position_ids=position_ids,
1230
+ past_key_values=past_key_values,
1231
+ inputs_embeds=inputs_embeds,
1232
+ use_cache=use_cache,
1233
+ output_attentions=output_attentions,
1234
+ output_hidden_states=output_hidden_states,
1235
+ return_dict=return_dict,
1236
+ )
1237
+ hidden_states = transformer_outputs[0]
1238
+ logits = self.score(hidden_states)
1239
+
1240
+ if input_ids is not None:
1241
+ batch_size = input_ids.shape[0]
1242
+ else:
1243
+ batch_size = inputs_embeds.shape[0]
1244
+
1245
+ if self.config.pad_token_id is None and batch_size != 1:
1246
+ raise ValueError(
1247
+ 'Cannot handle batch sizes > 1 if no padding token is defined.'
1248
+ )
1249
+ if self.config.pad_token_id is None:
1250
+ sequence_lengths = -1
1251
+ else:
1252
+ if input_ids is not None:
1253
+ sequence_lengths = (torch.eq(
1254
+ input_ids, self.config.pad_token_id).long().argmax(-1) -
1255
+ 1).to(logits.device)
1256
+ else:
1257
+ sequence_lengths = -1
1258
+
1259
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device),
1260
+ sequence_lengths]
1261
+
1262
+ loss = None
1263
+ if labels is not None:
1264
+ labels = labels.to(logits.device)
1265
+ if self.config.problem_type is None:
1266
+ if self.num_labels == 1:
1267
+ self.config.problem_type = 'regression'
1268
+ elif self.num_labels > 1 and (labels.dtype == torch.long
1269
+ or labels.dtype == torch.int):
1270
+ self.config.problem_type = 'single_label_classification'
1271
+ else:
1272
+ self.config.problem_type = 'multi_label_classification'
1273
+
1274
+ if self.config.problem_type == 'regression':
1275
+ loss_fct = MSELoss()
1276
+ if self.num_labels == 1:
1277
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1278
+ else:
1279
+ loss = loss_fct(pooled_logits, labels)
1280
+ elif self.config.problem_type == 'single_label_classification':
1281
+ loss_fct = CrossEntropyLoss()
1282
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels),
1283
+ labels.view(-1))
1284
+ elif self.config.problem_type == 'multi_label_classification':
1285
+ loss_fct = BCEWithLogitsLoss()
1286
+ loss = loss_fct(pooled_logits, labels)
1287
+ if not return_dict:
1288
+ output = (pooled_logits, ) + transformer_outputs[1:]
1289
+ return ((loss, ) + output) if loss is not None else output
1290
+
1291
+ return SequenceClassifierOutputWithPast(
1292
+ loss=loss,
1293
+ logits=pooled_logits,
1294
+ past_key_values=transformer_outputs.past_key_values,
1295
+ hidden_states=transformer_outputs.hidden_states,
1296
+ attentions=transformer_outputs.attentions,
1297
+ )
outputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:627291100a05c04d3242c86e297bb57b21d6d6f400377ea4864e0fa8a2cf6186
3
+ size 25957219
pytorch_model-00001-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a27b1903bff4f27dc5f26dfde2fb495dc95dc135b8487fccab3ce9a8039e6db
3
+ size 1993584648
pytorch_model-00002-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ab5ed7fc9d31dbda800a3350079b605abea39c195fc6e75d58477c0cfd7ac7f
3
+ size 1930835726
pytorch_model-00003-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bccb3dae15263a32a0c1cb184360a7d331f3972f83e088863c0b34a9ca47b0a2
3
+ size 1975435086
pytorch_model-00004-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:211cefb36dadd2ec21d400a4f67bee7526a35d36bf9a6ea782b4452c0dba42a3
3
+ size 1975435086
pytorch_model-00005-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35a33532402753f14a4c670e7cfbf9539da79c4589acf0b1d5cec0ae04f58d70
3
+ size 1975421490
pytorch_model-00006-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbeca98c6364bdceb9b605da6eec8f95e04d29df6b0b5f7f86a727de96c913e9
3
+ size 1983306968
pytorch_model-00007-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b95a8c03defb66bf9aa44dbf8d77d6d28dc6f8737754c79534014b1dbd3d0aae
3
+ size 1518748450
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13352540160
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00007-of-00007.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00007.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
9
+ "model.layers.0.mlp.down_proj.scale": "pytorch_model-00001-of-00007.bin",
10
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
11
+ "model.layers.0.mlp.gate_proj.scale": "pytorch_model-00001-of-00007.bin",
12
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
13
+ "model.layers.0.mlp.up_proj.scale": "pytorch_model-00001-of-00007.bin",
14
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
15
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
16
+ "model.layers.0.self_attn.k_proj.scale": "pytorch_model-00001-of-00007.bin",
17
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
18
+ "model.layers.0.self_attn.o_proj.scale": "pytorch_model-00001-of-00007.bin",
19
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
20
+ "model.layers.0.self_attn.q_proj.scale": "pytorch_model-00001-of-00007.bin",
21
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
22
+ "model.layers.0.self_attn.v_proj.scale": "pytorch_model-00001-of-00007.bin",
23
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
24
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
25
+ "model.layers.1.mlp.down_proj.scale": "pytorch_model-00001-of-00007.bin",
26
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
27
+ "model.layers.1.mlp.gate_proj.scale": "pytorch_model-00001-of-00007.bin",
28
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
29
+ "model.layers.1.mlp.up_proj.scale": "pytorch_model-00001-of-00007.bin",
30
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
31
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
32
+ "model.layers.1.self_attn.k_proj.scale": "pytorch_model-00001-of-00007.bin",
33
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
34
+ "model.layers.1.self_attn.o_proj.scale": "pytorch_model-00001-of-00007.bin",
35
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
36
+ "model.layers.1.self_attn.q_proj.scale": "pytorch_model-00001-of-00007.bin",
37
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
38
+ "model.layers.1.self_attn.v_proj.scale": "pytorch_model-00001-of-00007.bin",
39
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
40
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
41
+ "model.layers.10.mlp.down_proj.scale": "pytorch_model-00002-of-00007.bin",
42
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
43
+ "model.layers.10.mlp.gate_proj.scale": "pytorch_model-00002-of-00007.bin",
44
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
45
+ "model.layers.10.mlp.up_proj.scale": "pytorch_model-00002-of-00007.bin",
46
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
47
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
48
+ "model.layers.10.self_attn.k_proj.scale": "pytorch_model-00002-of-00007.bin",
49
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
50
+ "model.layers.10.self_attn.o_proj.scale": "pytorch_model-00002-of-00007.bin",
51
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
52
+ "model.layers.10.self_attn.q_proj.scale": "pytorch_model-00002-of-00007.bin",
53
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
54
+ "model.layers.10.self_attn.v_proj.scale": "pytorch_model-00002-of-00007.bin",
55
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
56
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
57
+ "model.layers.11.mlp.down_proj.scale": "pytorch_model-00003-of-00007.bin",
58
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
59
+ "model.layers.11.mlp.gate_proj.scale": "pytorch_model-00003-of-00007.bin",
60
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
61
+ "model.layers.11.mlp.up_proj.scale": "pytorch_model-00003-of-00007.bin",
62
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
63
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
64
+ "model.layers.11.self_attn.k_proj.scale": "pytorch_model-00002-of-00007.bin",
65
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
66
+ "model.layers.11.self_attn.o_proj.scale": "pytorch_model-00002-of-00007.bin",
67
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
68
+ "model.layers.11.self_attn.q_proj.scale": "pytorch_model-00002-of-00007.bin",
69
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
70
+ "model.layers.11.self_attn.v_proj.scale": "pytorch_model-00002-of-00007.bin",
71
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
72
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
73
+ "model.layers.12.mlp.down_proj.scale": "pytorch_model-00003-of-00007.bin",
74
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
75
+ "model.layers.12.mlp.gate_proj.scale": "pytorch_model-00003-of-00007.bin",
76
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
77
+ "model.layers.12.mlp.up_proj.scale": "pytorch_model-00003-of-00007.bin",
78
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
79
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
80
+ "model.layers.12.self_attn.k_proj.scale": "pytorch_model-00003-of-00007.bin",
81
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
82
+ "model.layers.12.self_attn.o_proj.scale": "pytorch_model-00003-of-00007.bin",
83
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
84
+ "model.layers.12.self_attn.q_proj.scale": "pytorch_model-00003-of-00007.bin",
85
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
86
+ "model.layers.12.self_attn.v_proj.scale": "pytorch_model-00003-of-00007.bin",
87
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
88
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
89
+ "model.layers.13.mlp.down_proj.scale": "pytorch_model-00003-of-00007.bin",
90
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
91
+ "model.layers.13.mlp.gate_proj.scale": "pytorch_model-00003-of-00007.bin",
92
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
93
+ "model.layers.13.mlp.up_proj.scale": "pytorch_model-00003-of-00007.bin",
94
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
95
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
96
+ "model.layers.13.self_attn.k_proj.scale": "pytorch_model-00003-of-00007.bin",
97
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
98
+ "model.layers.13.self_attn.o_proj.scale": "pytorch_model-00003-of-00007.bin",
99
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
100
+ "model.layers.13.self_attn.q_proj.scale": "pytorch_model-00003-of-00007.bin",
101
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
102
+ "model.layers.13.self_attn.v_proj.scale": "pytorch_model-00003-of-00007.bin",
103
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
104
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
105
+ "model.layers.14.mlp.down_proj.scale": "pytorch_model-00003-of-00007.bin",
106
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
107
+ "model.layers.14.mlp.gate_proj.scale": "pytorch_model-00003-of-00007.bin",
108
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
109
+ "model.layers.14.mlp.up_proj.scale": "pytorch_model-00003-of-00007.bin",
110
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
111
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
112
+ "model.layers.14.self_attn.k_proj.scale": "pytorch_model-00003-of-00007.bin",
113
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
114
+ "model.layers.14.self_attn.o_proj.scale": "pytorch_model-00003-of-00007.bin",
115
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
116
+ "model.layers.14.self_attn.q_proj.scale": "pytorch_model-00003-of-00007.bin",
117
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
118
+ "model.layers.14.self_attn.v_proj.scale": "pytorch_model-00003-of-00007.bin",
119
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
120
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
121
+ "model.layers.15.mlp.down_proj.scale": "pytorch_model-00003-of-00007.bin",
122
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
123
+ "model.layers.15.mlp.gate_proj.scale": "pytorch_model-00003-of-00007.bin",
124
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
125
+ "model.layers.15.mlp.up_proj.scale": "pytorch_model-00003-of-00007.bin",
126
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
127
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
128
+ "model.layers.15.self_attn.k_proj.scale": "pytorch_model-00003-of-00007.bin",
129
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
130
+ "model.layers.15.self_attn.o_proj.scale": "pytorch_model-00003-of-00007.bin",
131
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
132
+ "model.layers.15.self_attn.q_proj.scale": "pytorch_model-00003-of-00007.bin",
133
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
134
+ "model.layers.15.self_attn.v_proj.scale": "pytorch_model-00003-of-00007.bin",
135
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
136
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
137
+ "model.layers.16.mlp.down_proj.scale": "pytorch_model-00003-of-00007.bin",
138
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
139
+ "model.layers.16.mlp.gate_proj.scale": "pytorch_model-00003-of-00007.bin",
140
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
141
+ "model.layers.16.mlp.up_proj.scale": "pytorch_model-00003-of-00007.bin",
142
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
143
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
144
+ "model.layers.16.self_attn.k_proj.scale": "pytorch_model-00003-of-00007.bin",
145
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
146
+ "model.layers.16.self_attn.o_proj.scale": "pytorch_model-00003-of-00007.bin",
147
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
148
+ "model.layers.16.self_attn.q_proj.scale": "pytorch_model-00003-of-00007.bin",
149
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
150
+ "model.layers.16.self_attn.v_proj.scale": "pytorch_model-00003-of-00007.bin",
151
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
152
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
153
+ "model.layers.17.mlp.down_proj.scale": "pytorch_model-00004-of-00007.bin",
154
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
155
+ "model.layers.17.mlp.gate_proj.scale": "pytorch_model-00003-of-00007.bin",
156
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
157
+ "model.layers.17.mlp.up_proj.scale": "pytorch_model-00004-of-00007.bin",
158
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
159
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
160
+ "model.layers.17.self_attn.k_proj.scale": "pytorch_model-00003-of-00007.bin",
161
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
162
+ "model.layers.17.self_attn.o_proj.scale": "pytorch_model-00003-of-00007.bin",
163
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
164
+ "model.layers.17.self_attn.q_proj.scale": "pytorch_model-00003-of-00007.bin",
165
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
166
+ "model.layers.17.self_attn.v_proj.scale": "pytorch_model-00003-of-00007.bin",
167
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
168
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
169
+ "model.layers.18.mlp.down_proj.scale": "pytorch_model-00004-of-00007.bin",
170
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
171
+ "model.layers.18.mlp.gate_proj.scale": "pytorch_model-00004-of-00007.bin",
172
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
173
+ "model.layers.18.mlp.up_proj.scale": "pytorch_model-00004-of-00007.bin",
174
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
175
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
176
+ "model.layers.18.self_attn.k_proj.scale": "pytorch_model-00004-of-00007.bin",
177
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
178
+ "model.layers.18.self_attn.o_proj.scale": "pytorch_model-00004-of-00007.bin",
179
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
180
+ "model.layers.18.self_attn.q_proj.scale": "pytorch_model-00004-of-00007.bin",
181
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
182
+ "model.layers.18.self_attn.v_proj.scale": "pytorch_model-00004-of-00007.bin",
183
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
184
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
185
+ "model.layers.19.mlp.down_proj.scale": "pytorch_model-00004-of-00007.bin",
186
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
187
+ "model.layers.19.mlp.gate_proj.scale": "pytorch_model-00004-of-00007.bin",
188
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
189
+ "model.layers.19.mlp.up_proj.scale": "pytorch_model-00004-of-00007.bin",
190
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
191
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
192
+ "model.layers.19.self_attn.k_proj.scale": "pytorch_model-00004-of-00007.bin",
193
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
194
+ "model.layers.19.self_attn.o_proj.scale": "pytorch_model-00004-of-00007.bin",
195
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
196
+ "model.layers.19.self_attn.q_proj.scale": "pytorch_model-00004-of-00007.bin",
197
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
198
+ "model.layers.19.self_attn.v_proj.scale": "pytorch_model-00004-of-00007.bin",
199
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
200
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
201
+ "model.layers.2.mlp.down_proj.scale": "pytorch_model-00001-of-00007.bin",
202
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
203
+ "model.layers.2.mlp.gate_proj.scale": "pytorch_model-00001-of-00007.bin",
204
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
205
+ "model.layers.2.mlp.up_proj.scale": "pytorch_model-00001-of-00007.bin",
206
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
207
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
208
+ "model.layers.2.self_attn.k_proj.scale": "pytorch_model-00001-of-00007.bin",
209
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
210
+ "model.layers.2.self_attn.o_proj.scale": "pytorch_model-00001-of-00007.bin",
211
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
212
+ "model.layers.2.self_attn.q_proj.scale": "pytorch_model-00001-of-00007.bin",
213
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
214
+ "model.layers.2.self_attn.v_proj.scale": "pytorch_model-00001-of-00007.bin",
215
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
216
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
217
+ "model.layers.20.mlp.down_proj.scale": "pytorch_model-00004-of-00007.bin",
218
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
219
+ "model.layers.20.mlp.gate_proj.scale": "pytorch_model-00004-of-00007.bin",
220
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
221
+ "model.layers.20.mlp.up_proj.scale": "pytorch_model-00004-of-00007.bin",
222
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
223
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
224
+ "model.layers.20.self_attn.k_proj.scale": "pytorch_model-00004-of-00007.bin",
225
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
226
+ "model.layers.20.self_attn.o_proj.scale": "pytorch_model-00004-of-00007.bin",
227
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
228
+ "model.layers.20.self_attn.q_proj.scale": "pytorch_model-00004-of-00007.bin",
229
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
230
+ "model.layers.20.self_attn.v_proj.scale": "pytorch_model-00004-of-00007.bin",
231
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
232
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
233
+ "model.layers.21.mlp.down_proj.scale": "pytorch_model-00004-of-00007.bin",
234
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
235
+ "model.layers.21.mlp.gate_proj.scale": "pytorch_model-00004-of-00007.bin",
236
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
237
+ "model.layers.21.mlp.up_proj.scale": "pytorch_model-00004-of-00007.bin",
238
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
239
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
240
+ "model.layers.21.self_attn.k_proj.scale": "pytorch_model-00004-of-00007.bin",
241
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
242
+ "model.layers.21.self_attn.o_proj.scale": "pytorch_model-00004-of-00007.bin",
243
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
244
+ "model.layers.21.self_attn.q_proj.scale": "pytorch_model-00004-of-00007.bin",
245
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
246
+ "model.layers.21.self_attn.v_proj.scale": "pytorch_model-00004-of-00007.bin",
247
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
248
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
249
+ "model.layers.22.mlp.down_proj.scale": "pytorch_model-00004-of-00007.bin",
250
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
251
+ "model.layers.22.mlp.gate_proj.scale": "pytorch_model-00004-of-00007.bin",
252
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
253
+ "model.layers.22.mlp.up_proj.scale": "pytorch_model-00004-of-00007.bin",
254
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
255
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
256
+ "model.layers.22.self_attn.k_proj.scale": "pytorch_model-00004-of-00007.bin",
257
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
258
+ "model.layers.22.self_attn.o_proj.scale": "pytorch_model-00004-of-00007.bin",
259
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
260
+ "model.layers.22.self_attn.q_proj.scale": "pytorch_model-00004-of-00007.bin",
261
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
262
+ "model.layers.22.self_attn.v_proj.scale": "pytorch_model-00004-of-00007.bin",
263
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
264
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
265
+ "model.layers.23.mlp.down_proj.scale": "pytorch_model-00005-of-00007.bin",
266
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
267
+ "model.layers.23.mlp.gate_proj.scale": "pytorch_model-00004-of-00007.bin",
268
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
269
+ "model.layers.23.mlp.up_proj.scale": "pytorch_model-00004-of-00007.bin",
270
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
271
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
272
+ "model.layers.23.self_attn.k_proj.scale": "pytorch_model-00004-of-00007.bin",
273
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
274
+ "model.layers.23.self_attn.o_proj.scale": "pytorch_model-00004-of-00007.bin",
275
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
276
+ "model.layers.23.self_attn.q_proj.scale": "pytorch_model-00004-of-00007.bin",
277
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
278
+ "model.layers.23.self_attn.v_proj.scale": "pytorch_model-00004-of-00007.bin",
279
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
280
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
281
+ "model.layers.24.mlp.down_proj.scale": "pytorch_model-00005-of-00007.bin",
282
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
283
+ "model.layers.24.mlp.gate_proj.scale": "pytorch_model-00005-of-00007.bin",
284
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
285
+ "model.layers.24.mlp.up_proj.scale": "pytorch_model-00005-of-00007.bin",
286
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
287
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
288
+ "model.layers.24.self_attn.k_proj.scale": "pytorch_model-00005-of-00007.bin",
289
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
290
+ "model.layers.24.self_attn.o_proj.scale": "pytorch_model-00005-of-00007.bin",
291
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
292
+ "model.layers.24.self_attn.q_proj.scale": "pytorch_model-00005-of-00007.bin",
293
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
294
+ "model.layers.24.self_attn.v_proj.scale": "pytorch_model-00005-of-00007.bin",
295
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
296
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
297
+ "model.layers.25.mlp.down_proj.scale": "pytorch_model-00005-of-00007.bin",
298
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
299
+ "model.layers.25.mlp.gate_proj.scale": "pytorch_model-00005-of-00007.bin",
300
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
301
+ "model.layers.25.mlp.up_proj.scale": "pytorch_model-00005-of-00007.bin",
302
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
303
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
304
+ "model.layers.25.self_attn.k_proj.scale": "pytorch_model-00005-of-00007.bin",
305
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
306
+ "model.layers.25.self_attn.o_proj.scale": "pytorch_model-00005-of-00007.bin",
307
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
308
+ "model.layers.25.self_attn.q_proj.scale": "pytorch_model-00005-of-00007.bin",
309
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
310
+ "model.layers.25.self_attn.v_proj.scale": "pytorch_model-00005-of-00007.bin",
311
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
312
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
313
+ "model.layers.26.mlp.down_proj.scale": "pytorch_model-00005-of-00007.bin",
314
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
315
+ "model.layers.26.mlp.gate_proj.scale": "pytorch_model-00005-of-00007.bin",
316
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
317
+ "model.layers.26.mlp.up_proj.scale": "pytorch_model-00005-of-00007.bin",
318
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
319
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
320
+ "model.layers.26.self_attn.k_proj.scale": "pytorch_model-00005-of-00007.bin",
321
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
322
+ "model.layers.26.self_attn.o_proj.scale": "pytorch_model-00005-of-00007.bin",
323
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
324
+ "model.layers.26.self_attn.q_proj.scale": "pytorch_model-00005-of-00007.bin",
325
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
326
+ "model.layers.26.self_attn.v_proj.scale": "pytorch_model-00005-of-00007.bin",
327
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
328
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
329
+ "model.layers.27.mlp.down_proj.scale": "pytorch_model-00005-of-00007.bin",
330
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
331
+ "model.layers.27.mlp.gate_proj.scale": "pytorch_model-00005-of-00007.bin",
332
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
333
+ "model.layers.27.mlp.up_proj.scale": "pytorch_model-00005-of-00007.bin",
334
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
335
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
336
+ "model.layers.27.self_attn.k_proj.scale": "pytorch_model-00005-of-00007.bin",
337
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
338
+ "model.layers.27.self_attn.o_proj.scale": "pytorch_model-00005-of-00007.bin",
339
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
340
+ "model.layers.27.self_attn.q_proj.scale": "pytorch_model-00005-of-00007.bin",
341
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
342
+ "model.layers.27.self_attn.v_proj.scale": "pytorch_model-00005-of-00007.bin",
343
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
344
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
345
+ "model.layers.28.mlp.down_proj.scale": "pytorch_model-00005-of-00007.bin",
346
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
347
+ "model.layers.28.mlp.gate_proj.scale": "pytorch_model-00005-of-00007.bin",
348
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
349
+ "model.layers.28.mlp.up_proj.scale": "pytorch_model-00005-of-00007.bin",
350
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
351
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
352
+ "model.layers.28.self_attn.k_proj.scale": "pytorch_model-00005-of-00007.bin",
353
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
354
+ "model.layers.28.self_attn.o_proj.scale": "pytorch_model-00005-of-00007.bin",
355
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
356
+ "model.layers.28.self_attn.q_proj.scale": "pytorch_model-00005-of-00007.bin",
357
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
358
+ "model.layers.28.self_attn.v_proj.scale": "pytorch_model-00005-of-00007.bin",
359
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
360
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
361
+ "model.layers.29.mlp.down_proj.scale": "pytorch_model-00005-of-00007.bin",
362
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
363
+ "model.layers.29.mlp.gate_proj.scale": "pytorch_model-00005-of-00007.bin",
364
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
365
+ "model.layers.29.mlp.up_proj.scale": "pytorch_model-00005-of-00007.bin",
366
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
367
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
368
+ "model.layers.29.self_attn.k_proj.scale": "pytorch_model-00005-of-00007.bin",
369
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
370
+ "model.layers.29.self_attn.o_proj.scale": "pytorch_model-00005-of-00007.bin",
371
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
372
+ "model.layers.29.self_attn.q_proj.scale": "pytorch_model-00005-of-00007.bin",
373
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
374
+ "model.layers.29.self_attn.v_proj.scale": "pytorch_model-00005-of-00007.bin",
375
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
376
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
377
+ "model.layers.3.mlp.down_proj.scale": "pytorch_model-00001-of-00007.bin",
378
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
379
+ "model.layers.3.mlp.gate_proj.scale": "pytorch_model-00001-of-00007.bin",
380
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
381
+ "model.layers.3.mlp.up_proj.scale": "pytorch_model-00001-of-00007.bin",
382
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
383
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
384
+ "model.layers.3.self_attn.k_proj.scale": "pytorch_model-00001-of-00007.bin",
385
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
386
+ "model.layers.3.self_attn.o_proj.scale": "pytorch_model-00001-of-00007.bin",
387
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
388
+ "model.layers.3.self_attn.q_proj.scale": "pytorch_model-00001-of-00007.bin",
389
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
390
+ "model.layers.3.self_attn.v_proj.scale": "pytorch_model-00001-of-00007.bin",
391
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
392
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
393
+ "model.layers.30.mlp.down_proj.scale": "pytorch_model-00006-of-00007.bin",
394
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
395
+ "model.layers.30.mlp.gate_proj.scale": "pytorch_model-00006-of-00007.bin",
396
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
397
+ "model.layers.30.mlp.up_proj.scale": "pytorch_model-00006-of-00007.bin",
398
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
399
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
400
+ "model.layers.30.self_attn.k_proj.scale": "pytorch_model-00006-of-00007.bin",
401
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
402
+ "model.layers.30.self_attn.o_proj.scale": "pytorch_model-00006-of-00007.bin",
403
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
404
+ "model.layers.30.self_attn.q_proj.scale": "pytorch_model-00006-of-00007.bin",
405
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
406
+ "model.layers.30.self_attn.v_proj.scale": "pytorch_model-00006-of-00007.bin",
407
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
408
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
409
+ "model.layers.31.mlp.down_proj.scale": "pytorch_model-00006-of-00007.bin",
410
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
411
+ "model.layers.31.mlp.gate_proj.scale": "pytorch_model-00006-of-00007.bin",
412
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
413
+ "model.layers.31.mlp.up_proj.scale": "pytorch_model-00006-of-00007.bin",
414
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
415
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
416
+ "model.layers.31.self_attn.k_proj.scale": "pytorch_model-00006-of-00007.bin",
417
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
418
+ "model.layers.31.self_attn.o_proj.scale": "pytorch_model-00006-of-00007.bin",
419
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
420
+ "model.layers.31.self_attn.q_proj.scale": "pytorch_model-00006-of-00007.bin",
421
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
422
+ "model.layers.31.self_attn.v_proj.scale": "pytorch_model-00006-of-00007.bin",
423
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
424
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
425
+ "model.layers.32.mlp.down_proj.scale": "pytorch_model-00006-of-00007.bin",
426
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
427
+ "model.layers.32.mlp.gate_proj.scale": "pytorch_model-00006-of-00007.bin",
428
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
429
+ "model.layers.32.mlp.up_proj.scale": "pytorch_model-00006-of-00007.bin",
430
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
431
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
432
+ "model.layers.32.self_attn.k_proj.scale": "pytorch_model-00006-of-00007.bin",
433
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
434
+ "model.layers.32.self_attn.o_proj.scale": "pytorch_model-00006-of-00007.bin",
435
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
436
+ "model.layers.32.self_attn.q_proj.scale": "pytorch_model-00006-of-00007.bin",
437
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
438
+ "model.layers.32.self_attn.v_proj.scale": "pytorch_model-00006-of-00007.bin",
439
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
440
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
441
+ "model.layers.33.mlp.down_proj.scale": "pytorch_model-00006-of-00007.bin",
442
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
443
+ "model.layers.33.mlp.gate_proj.scale": "pytorch_model-00006-of-00007.bin",
444
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
445
+ "model.layers.33.mlp.up_proj.scale": "pytorch_model-00006-of-00007.bin",
446
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
447
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
448
+ "model.layers.33.self_attn.k_proj.scale": "pytorch_model-00006-of-00007.bin",
449
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
450
+ "model.layers.33.self_attn.o_proj.scale": "pytorch_model-00006-of-00007.bin",
451
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
452
+ "model.layers.33.self_attn.q_proj.scale": "pytorch_model-00006-of-00007.bin",
453
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
454
+ "model.layers.33.self_attn.v_proj.scale": "pytorch_model-00006-of-00007.bin",
455
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
456
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
457
+ "model.layers.34.mlp.down_proj.scale": "pytorch_model-00006-of-00007.bin",
458
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
459
+ "model.layers.34.mlp.gate_proj.scale": "pytorch_model-00006-of-00007.bin",
460
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
461
+ "model.layers.34.mlp.up_proj.scale": "pytorch_model-00006-of-00007.bin",
462
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
463
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
464
+ "model.layers.34.self_attn.k_proj.scale": "pytorch_model-00006-of-00007.bin",
465
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
466
+ "model.layers.34.self_attn.o_proj.scale": "pytorch_model-00006-of-00007.bin",
467
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
468
+ "model.layers.34.self_attn.q_proj.scale": "pytorch_model-00006-of-00007.bin",
469
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
470
+ "model.layers.34.self_attn.v_proj.scale": "pytorch_model-00006-of-00007.bin",
471
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
472
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
473
+ "model.layers.35.mlp.down_proj.scale": "pytorch_model-00006-of-00007.bin",
474
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
475
+ "model.layers.35.mlp.gate_proj.scale": "pytorch_model-00006-of-00007.bin",
476
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
477
+ "model.layers.35.mlp.up_proj.scale": "pytorch_model-00006-of-00007.bin",
478
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
479
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
480
+ "model.layers.35.self_attn.k_proj.scale": "pytorch_model-00006-of-00007.bin",
481
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
482
+ "model.layers.35.self_attn.o_proj.scale": "pytorch_model-00006-of-00007.bin",
483
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
484
+ "model.layers.35.self_attn.q_proj.scale": "pytorch_model-00006-of-00007.bin",
485
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
486
+ "model.layers.35.self_attn.v_proj.scale": "pytorch_model-00006-of-00007.bin",
487
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
488
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
489
+ "model.layers.36.mlp.down_proj.scale": "pytorch_model-00007-of-00007.bin",
490
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
491
+ "model.layers.36.mlp.gate_proj.scale": "pytorch_model-00007-of-00007.bin",
492
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
493
+ "model.layers.36.mlp.up_proj.scale": "pytorch_model-00007-of-00007.bin",
494
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
495
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
496
+ "model.layers.36.self_attn.k_proj.scale": "pytorch_model-00006-of-00007.bin",
497
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
498
+ "model.layers.36.self_attn.o_proj.scale": "pytorch_model-00007-of-00007.bin",
499
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
500
+ "model.layers.36.self_attn.q_proj.scale": "pytorch_model-00006-of-00007.bin",
501
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
502
+ "model.layers.36.self_attn.v_proj.scale": "pytorch_model-00006-of-00007.bin",
503
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
504
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
505
+ "model.layers.37.mlp.down_proj.scale": "pytorch_model-00007-of-00007.bin",
506
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
507
+ "model.layers.37.mlp.gate_proj.scale": "pytorch_model-00007-of-00007.bin",
508
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
509
+ "model.layers.37.mlp.up_proj.scale": "pytorch_model-00007-of-00007.bin",
510
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
511
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
512
+ "model.layers.37.self_attn.k_proj.scale": "pytorch_model-00007-of-00007.bin",
513
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
514
+ "model.layers.37.self_attn.o_proj.scale": "pytorch_model-00007-of-00007.bin",
515
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
516
+ "model.layers.37.self_attn.q_proj.scale": "pytorch_model-00007-of-00007.bin",
517
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
518
+ "model.layers.37.self_attn.v_proj.scale": "pytorch_model-00007-of-00007.bin",
519
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
520
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
521
+ "model.layers.38.mlp.down_proj.scale": "pytorch_model-00007-of-00007.bin",
522
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
523
+ "model.layers.38.mlp.gate_proj.scale": "pytorch_model-00007-of-00007.bin",
524
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
525
+ "model.layers.38.mlp.up_proj.scale": "pytorch_model-00007-of-00007.bin",
526
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
527
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
528
+ "model.layers.38.self_attn.k_proj.scale": "pytorch_model-00007-of-00007.bin",
529
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
530
+ "model.layers.38.self_attn.o_proj.scale": "pytorch_model-00007-of-00007.bin",
531
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
532
+ "model.layers.38.self_attn.q_proj.scale": "pytorch_model-00007-of-00007.bin",
533
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
534
+ "model.layers.38.self_attn.v_proj.scale": "pytorch_model-00007-of-00007.bin",
535
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
536
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
537
+ "model.layers.39.mlp.down_proj.scale": "pytorch_model-00007-of-00007.bin",
538
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
539
+ "model.layers.39.mlp.gate_proj.scale": "pytorch_model-00007-of-00007.bin",
540
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
541
+ "model.layers.39.mlp.up_proj.scale": "pytorch_model-00007-of-00007.bin",
542
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
543
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
544
+ "model.layers.39.self_attn.k_proj.scale": "pytorch_model-00007-of-00007.bin",
545
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
546
+ "model.layers.39.self_attn.o_proj.scale": "pytorch_model-00007-of-00007.bin",
547
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
548
+ "model.layers.39.self_attn.q_proj.scale": "pytorch_model-00007-of-00007.bin",
549
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
550
+ "model.layers.39.self_attn.v_proj.scale": "pytorch_model-00007-of-00007.bin",
551
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
552
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
553
+ "model.layers.4.mlp.down_proj.scale": "pytorch_model-00001-of-00007.bin",
554
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
555
+ "model.layers.4.mlp.gate_proj.scale": "pytorch_model-00001-of-00007.bin",
556
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
557
+ "model.layers.4.mlp.up_proj.scale": "pytorch_model-00001-of-00007.bin",
558
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
559
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
560
+ "model.layers.4.self_attn.k_proj.scale": "pytorch_model-00001-of-00007.bin",
561
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
562
+ "model.layers.4.self_attn.o_proj.scale": "pytorch_model-00001-of-00007.bin",
563
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
564
+ "model.layers.4.self_attn.q_proj.scale": "pytorch_model-00001-of-00007.bin",
565
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
566
+ "model.layers.4.self_attn.v_proj.scale": "pytorch_model-00001-of-00007.bin",
567
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
568
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
569
+ "model.layers.5.mlp.down_proj.scale": "pytorch_model-00002-of-00007.bin",
570
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
571
+ "model.layers.5.mlp.gate_proj.scale": "pytorch_model-00002-of-00007.bin",
572
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
573
+ "model.layers.5.mlp.up_proj.scale": "pytorch_model-00002-of-00007.bin",
574
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
575
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
576
+ "model.layers.5.self_attn.k_proj.scale": "pytorch_model-00001-of-00007.bin",
577
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
578
+ "model.layers.5.self_attn.o_proj.scale": "pytorch_model-00002-of-00007.bin",
579
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
580
+ "model.layers.5.self_attn.q_proj.scale": "pytorch_model-00001-of-00007.bin",
581
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
582
+ "model.layers.5.self_attn.v_proj.scale": "pytorch_model-00001-of-00007.bin",
583
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
584
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
585
+ "model.layers.6.mlp.down_proj.scale": "pytorch_model-00002-of-00007.bin",
586
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
587
+ "model.layers.6.mlp.gate_proj.scale": "pytorch_model-00002-of-00007.bin",
588
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
589
+ "model.layers.6.mlp.up_proj.scale": "pytorch_model-00002-of-00007.bin",
590
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
591
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
592
+ "model.layers.6.self_attn.k_proj.scale": "pytorch_model-00002-of-00007.bin",
593
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
594
+ "model.layers.6.self_attn.o_proj.scale": "pytorch_model-00002-of-00007.bin",
595
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
596
+ "model.layers.6.self_attn.q_proj.scale": "pytorch_model-00002-of-00007.bin",
597
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
598
+ "model.layers.6.self_attn.v_proj.scale": "pytorch_model-00002-of-00007.bin",
599
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
600
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
601
+ "model.layers.7.mlp.down_proj.scale": "pytorch_model-00002-of-00007.bin",
602
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
603
+ "model.layers.7.mlp.gate_proj.scale": "pytorch_model-00002-of-00007.bin",
604
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
605
+ "model.layers.7.mlp.up_proj.scale": "pytorch_model-00002-of-00007.bin",
606
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
607
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
608
+ "model.layers.7.self_attn.k_proj.scale": "pytorch_model-00002-of-00007.bin",
609
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
610
+ "model.layers.7.self_attn.o_proj.scale": "pytorch_model-00002-of-00007.bin",
611
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
612
+ "model.layers.7.self_attn.q_proj.scale": "pytorch_model-00002-of-00007.bin",
613
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
614
+ "model.layers.7.self_attn.v_proj.scale": "pytorch_model-00002-of-00007.bin",
615
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
616
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
617
+ "model.layers.8.mlp.down_proj.scale": "pytorch_model-00002-of-00007.bin",
618
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
619
+ "model.layers.8.mlp.gate_proj.scale": "pytorch_model-00002-of-00007.bin",
620
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
621
+ "model.layers.8.mlp.up_proj.scale": "pytorch_model-00002-of-00007.bin",
622
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
623
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
624
+ "model.layers.8.self_attn.k_proj.scale": "pytorch_model-00002-of-00007.bin",
625
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
626
+ "model.layers.8.self_attn.o_proj.scale": "pytorch_model-00002-of-00007.bin",
627
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
628
+ "model.layers.8.self_attn.q_proj.scale": "pytorch_model-00002-of-00007.bin",
629
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
630
+ "model.layers.8.self_attn.v_proj.scale": "pytorch_model-00002-of-00007.bin",
631
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
632
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
633
+ "model.layers.9.mlp.down_proj.scale": "pytorch_model-00002-of-00007.bin",
634
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
635
+ "model.layers.9.mlp.gate_proj.scale": "pytorch_model-00002-of-00007.bin",
636
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
637
+ "model.layers.9.mlp.up_proj.scale": "pytorch_model-00002-of-00007.bin",
638
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
639
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
640
+ "model.layers.9.self_attn.k_proj.scale": "pytorch_model-00002-of-00007.bin",
641
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
642
+ "model.layers.9.self_attn.o_proj.scale": "pytorch_model-00002-of-00007.bin",
643
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
644
+ "model.layers.9.self_attn.q_proj.scale": "pytorch_model-00002-of-00007.bin",
645
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
646
+ "model.layers.9.self_attn.v_proj.scale": "pytorch_model-00002-of-00007.bin",
647
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
648
+ "model.norm.weight": "pytorch_model-00007-of-00007.bin"
649
+ }
650
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|im_start|>",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32002": {
47
+ "content": "<|im_end|>",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ }
54
+ },
55
+ "bos_token": "<s>",
56
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
57
+ "clean_up_tokenization_spaces": false,
58
+ "eos_token": "</s>",
59
+ "legacy": false,
60
+ "model_max_length": 4096,
61
+ "pad_token": "[PAD]",
62
+ "padding_side": "right",
63
+ "sp_model_kwargs": {},
64
+ "spaces_between_special_tokens": false,
65
+ "tokenizer_class": "LlamaTokenizer",
66
+ "unk_token": "<unk>",
67
+ "use_default_system_prompt": true
68
+ }