--- license: mit base_model: thenlper/gte-base-zh tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: gte-base-zh-finetuned-emotion results: [] --- # gte-base-zh-finetuned-emotion This model is a fine-tuned version of [thenlper/gte-base-zh](https://huggingface.co/thenlper/gte-base-zh) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3958 - Accuracy: 0.8272 - F1: 0.8189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4103 | 1.0 | 570 | 0.3675 | 0.8333 | 0.8271 | | 0.3452 | 2.0 | 1140 | 0.3796 | 0.8290 | 0.8180 | | 0.2784 | 3.0 | 1710 | 0.3930 | 0.8397 | 0.8346 | | 0.1904 | 4.0 | 2280 | 0.5113 | 0.8364 | 0.8301 | | 0.1239 | 5.0 | 2850 | 0.6590 | 0.8232 | 0.8100 | | 0.0828 | 6.0 | 3420 | 0.8153 | 0.8254 | 0.8241 | | 0.0624 | 7.0 | 3990 | 0.8672 | 0.8250 | 0.8210 | | 0.0413 | 8.0 | 4560 | 0.9244 | 0.8255 | 0.8159 | | 0.0303 | 9.0 | 5130 | 1.0888 | 0.8199 | 0.8068 | | 0.0233 | 10.0 | 5700 | 1.1171 | 0.8250 | 0.8194 | | 0.0159 | 11.0 | 6270 | 1.2642 | 0.8241 | 0.8115 | | 0.009 | 12.0 | 6840 | 1.2930 | 0.8265 | 0.8169 | | 0.0056 | 13.0 | 7410 | 1.3720 | 0.8260 | 0.8150 | | 0.0019 | 14.0 | 7980 | 1.3878 | 0.8255 | 0.8168 | | 0.003 | 15.0 | 8550 | 1.3958 | 0.8272 | 0.8189 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2