add " (click to expand)" comments
Browse files
README.md
CHANGED
@@ -94,7 +94,7 @@ We release [our codebase here](https://github.com/ltgoslo/norallm). We compare a
|
|
94 |
We use the binary formulation of this task (positive vs. negative).
|
95 |
|
96 |
<details>
|
97 |
-
<summary>Method</summary>
|
98 |
|
99 |
* Evaluation setting: zero-shot and few-shot perplexity-based evaluation.
|
100 |
* Prompt: ```"Tekst: {text}\nSentiment:{label}"```, where the ```label``` is either "positiv" or "negativ".
|
@@ -127,7 +127,7 @@ We use the binary formulation of this task (positive vs. negative).
|
|
127 |
[NorQuAD](https://huggingface.co/datasets/ltg/norquad) ([Ivanova et al., 2023](https://aclanthology.org/2023.nodalida-1.17/)) is a dataset for extractive question answering in Norwegian designed similarly to [SQuAD (Rajpurkar et al., 2016)](https://aclanthology.org/D16-1264/).
|
128 |
|
129 |
<details>
|
130 |
-
<summary>Method</summary>
|
131 |
|
132 |
* Evaluation setting: zero-shot and few-shot settings via natural language generation using the greedy decoding strategy.
|
133 |
* Prompt: ```"Tittel: {title}\n\nTekst: {text}\n\nSpørsmål: {question}\n\nSvar:{answer}"``` Based on [Brown et al. (2020)](https://arxiv.org/abs/2005.14165).
|
@@ -160,7 +160,7 @@ We use the binary formulation of this task (positive vs. negative).
|
|
160 |
[Tatoeba](https://huggingface.co/datasets/Helsinki-NLP/tatoeba_mt) [(Tiedemann, 2020)](https://aclanthology.org/2020.wmt-1.139/) is a benchmark for machine translation, which includes hundreds of language pairs. We consider six language pairs (English <-> Bokmål, English <-> Nynorsk, and Bokmål <-> Nynorsk).
|
161 |
|
162 |
<details>
|
163 |
-
<summary>Method</summary>
|
164 |
|
165 |
* Evaluation setting: zero-shot and few-shot settings via natural language generation using the greedy decoding strategy.
|
166 |
* Prompt: ```"{source_language}: {source_text}\n{target_language}:{target_text}"```, where the ```source_language``` and ```target_language``` are ```Engelsk```, ```Bokmål```, or ```Nynorsk```. Based on [Garcia et al. (2023)](https://arxiv.org/abs/2302.01398).
|
|
|
94 |
We use the binary formulation of this task (positive vs. negative).
|
95 |
|
96 |
<details>
|
97 |
+
<summary>Method (click to expand)</summary>
|
98 |
|
99 |
* Evaluation setting: zero-shot and few-shot perplexity-based evaluation.
|
100 |
* Prompt: ```"Tekst: {text}\nSentiment:{label}"```, where the ```label``` is either "positiv" or "negativ".
|
|
|
127 |
[NorQuAD](https://huggingface.co/datasets/ltg/norquad) ([Ivanova et al., 2023](https://aclanthology.org/2023.nodalida-1.17/)) is a dataset for extractive question answering in Norwegian designed similarly to [SQuAD (Rajpurkar et al., 2016)](https://aclanthology.org/D16-1264/).
|
128 |
|
129 |
<details>
|
130 |
+
<summary>Method (click to expand)</summary>
|
131 |
|
132 |
* Evaluation setting: zero-shot and few-shot settings via natural language generation using the greedy decoding strategy.
|
133 |
* Prompt: ```"Tittel: {title}\n\nTekst: {text}\n\nSpørsmål: {question}\n\nSvar:{answer}"``` Based on [Brown et al. (2020)](https://arxiv.org/abs/2005.14165).
|
|
|
160 |
[Tatoeba](https://huggingface.co/datasets/Helsinki-NLP/tatoeba_mt) [(Tiedemann, 2020)](https://aclanthology.org/2020.wmt-1.139/) is a benchmark for machine translation, which includes hundreds of language pairs. We consider six language pairs (English <-> Bokmål, English <-> Nynorsk, and Bokmål <-> Nynorsk).
|
161 |
|
162 |
<details>
|
163 |
+
<summary>Method (click to expand)</summary>
|
164 |
|
165 |
* Evaluation setting: zero-shot and few-shot settings via natural language generation using the greedy decoding strategy.
|
166 |
* Prompt: ```"{source_language}: {source_text}\n{target_language}:{target_text}"```, where the ```source_language``` and ```target_language``` are ```Engelsk```, ```Bokmål```, or ```Nynorsk```. Based on [Garcia et al. (2023)](https://arxiv.org/abs/2302.01398).
|