davda54 commited on
Commit
53f2bdc
1 Parent(s): 20c14be

add " (click to expand)" comments

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -94,7 +94,7 @@ We release [our codebase here](https://github.com/ltgoslo/norallm). We compare a
94
  We use the binary formulation of this task (positive vs. negative).
95
 
96
  <details>
97
- <summary>Method</summary>
98
 
99
  * Evaluation setting: zero-shot and few-shot perplexity-based evaluation.
100
  * Prompt: ```"Tekst: {text}\nSentiment:{label}"```, where the ```label``` is either "positiv" or "negativ".
@@ -127,7 +127,7 @@ We use the binary formulation of this task (positive vs. negative).
127
  [NorQuAD](https://huggingface.co/datasets/ltg/norquad) ([Ivanova et al., 2023](https://aclanthology.org/2023.nodalida-1.17/)) is a dataset for extractive question answering in Norwegian designed similarly to [SQuAD (Rajpurkar et al., 2016)](https://aclanthology.org/D16-1264/).
128
 
129
  <details>
130
- <summary>Method</summary>
131
 
132
  * Evaluation setting: zero-shot and few-shot settings via natural language generation using the greedy decoding strategy.
133
  * Prompt: ```"Tittel: {title}\n\nTekst: {text}\n\nSpørsmål: {question}\n\nSvar:{answer}"``` Based on [Brown et al. (2020)](https://arxiv.org/abs/2005.14165).
@@ -160,7 +160,7 @@ We use the binary formulation of this task (positive vs. negative).
160
  [Tatoeba](https://huggingface.co/datasets/Helsinki-NLP/tatoeba_mt) [(Tiedemann, 2020)](https://aclanthology.org/2020.wmt-1.139/) is a benchmark for machine translation, which includes hundreds of language pairs. We consider six language pairs (English <-> Bokmål, English <-> Nynorsk, and Bokmål <-> Nynorsk).
161
 
162
  <details>
163
- <summary>Method</summary>
164
 
165
  * Evaluation setting: zero-shot and few-shot settings via natural language generation using the greedy decoding strategy.
166
  * Prompt: ```"{source_language}: {source_text}\n{target_language}:{target_text}"```, where the ```source_language``` and ```target_language``` are ```Engelsk```, ```Bokmål```, or ```Nynorsk```. Based on [Garcia et al. (2023)](https://arxiv.org/abs/2302.01398).
 
94
  We use the binary formulation of this task (positive vs. negative).
95
 
96
  <details>
97
+ <summary>Method (click to expand)</summary>
98
 
99
  * Evaluation setting: zero-shot and few-shot perplexity-based evaluation.
100
  * Prompt: ```"Tekst: {text}\nSentiment:{label}"```, where the ```label``` is either "positiv" or "negativ".
 
127
  [NorQuAD](https://huggingface.co/datasets/ltg/norquad) ([Ivanova et al., 2023](https://aclanthology.org/2023.nodalida-1.17/)) is a dataset for extractive question answering in Norwegian designed similarly to [SQuAD (Rajpurkar et al., 2016)](https://aclanthology.org/D16-1264/).
128
 
129
  <details>
130
+ <summary>Method (click to expand)</summary>
131
 
132
  * Evaluation setting: zero-shot and few-shot settings via natural language generation using the greedy decoding strategy.
133
  * Prompt: ```"Tittel: {title}\n\nTekst: {text}\n\nSpørsmål: {question}\n\nSvar:{answer}"``` Based on [Brown et al. (2020)](https://arxiv.org/abs/2005.14165).
 
160
  [Tatoeba](https://huggingface.co/datasets/Helsinki-NLP/tatoeba_mt) [(Tiedemann, 2020)](https://aclanthology.org/2020.wmt-1.139/) is a benchmark for machine translation, which includes hundreds of language pairs. We consider six language pairs (English <-> Bokmål, English <-> Nynorsk, and Bokmål <-> Nynorsk).
161
 
162
  <details>
163
+ <summary>Method (click to expand)</summary>
164
 
165
  * Evaluation setting: zero-shot and few-shot settings via natural language generation using the greedy decoding strategy.
166
  * Prompt: ```"{source_language}: {source_text}\n{target_language}:{target_text}"```, where the ```source_language``` and ```target_language``` are ```Engelsk```, ```Bokmål```, or ```Nynorsk```. Based on [Garcia et al. (2023)](https://arxiv.org/abs/2302.01398).