--- license: mit base_model: gpt2 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - precision - recall - f1 model-index: - name: results results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9330666661262512 - name: Precision type: precision value: 0.9330666661262512 - name: Recall type: recall value: 0.9330666661262512 - name: F1 type: f1 value: 0.9330666661262512 --- # results This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2797 - Accuracy: 0.9331 - Precision: 0.9331 - Recall: 0.9331 - F1: 0.9331 - Auroc: 0.9810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Accuracy | Auroc | F1 | Validation Loss | Precision | Recall | |:-------------:|:-----:|:----:|:--------:|:------:|:------:|:---------------:|:---------:|:------:| | 0.1436 | 0.46 | 500 | 0.8935 | 0.9751 | 0.8935 | 0.2923 | 0.8935 | 0.8935 | | 0.1621 | 0.91 | 1000 | 0.9261 | 0.9789 | 0.9261 | 0.1984 | 0.9261 | 0.9261 | | 0.2196 | 1.37 | 1500 | 0.9289 | 0.9810 | 0.9289 | 0.2082 | 0.9289 | 0.9289 | | 0.1457 | 1.83 | 2000 | 0.9325 | 0.9816 | 0.9325 | 0.2282 | 0.9325 | 0.9325 | | 0.1103 | 2.29 | 2500 | 0.9305 | 0.9806 | 0.9305 | 0.3201 | 0.9305 | 0.9305 | | 0.0679 | 2.74 | 3000 | 0.2797 | 0.9331 | 0.9331 | 0.9331 | 0.9331 | 0.9810 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1