File size: 3,452 Bytes
84c1430 202daa2 84c1430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# Shortened LLaMA Model Card
Shortened LLaMA is a depth-pruned version of LLaMA models & variants for efficient text generation.
- **Developed by:** [Nota AI](https://www.nota.ai/)
- **License:** Non-commercial license
- **Repository:** https://github.com/Nota-NetsPresso/shortened-llm
- **Paper:** https://arxiv.org/abs/2402.02834
## Compression Method
After identifying unimportant Transformer blocks, we perform one-shot pruning and light LoRA-based retraining.
<details>
<summary>
Click to see a method figure.
</summary>
<img alt="method" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st-llama_method.png" width="100%">
</details>
## Model Links
| Source<br>Model | Pruning<br>Ratio | Pruning<br>Criterion | HF Models<br>Link |
|:---:|:---:|:---:|:---:|
| LLaMA-1-7B | 20% | PPL | [nota-ai/st-llama-1-5.5b-ppl](https://huggingface.co/nota-ai/st-llama-1-5.5b-ppl) |
| LLaMA-1-7B | 20% | Taylor+ | [nota-ai/st-llama-1-5.5b-taylor](https://huggingface.co/nota-ai/st-llama-1-5.5b-taylor) |
| Vicuna-v1.3-7B | 20% | PPL | [nota-ai/st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-ppl) |
| Vicuna-v1.3-7B | 20% | Taylor+ | [nota-ai/st-vicuna-v1.3-5.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-taylor) |
| Vicuna-v1.3-13B | 21% | PPL | [nota-ai/st-vicuna-v1.3-10.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-ppl) |
| Vicuna-v1.3-13B | 21% | Taylor+ | [nota-ai/st-vicuna-v1.3-10.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-taylor) |
## Zero-shot Performance & Efficiency Results
- EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c)
<img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st-llama_zero-shot_scores.png" width="100%">
## License
- All rights related to this repository and the compressed models are reserved by Nota Inc.
- The intended use is strictly limited to research and non-commercial projects.
## Acknowledgments
- [LLM-Pruner](https://github.com/horseee/LLM-Pruner), which utilizes [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness), [PEFT](https://github.com/huggingface/peft), and [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Thanks for the pioneering work on structured pruning of LLMs!
- Meta AI's [LLaMA](https://github.com/facebookresearch/llama) and LMSYS Org's [Vicuna](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). Thanks for the open-source LLMs!
## Citation
```bibtex
@article{kim2024shortened,
title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models},
author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
journal={arXiv preprint arXiv:2402.02834},
year={2024},
url={https://arxiv.org/abs/2402.02834}
}
```
```bibtex
@article{kim2024mefomo,
title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models},
author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
journal={ICLR Workshop on Mathematical and Empirical Understanding of Foundation Models (ME-FoMo)},
year={2024},
url={https://openreview.net/forum?id=18VGxuOdpu}
}
``` |