File size: 3,452 Bytes
84c1430
 
 
 
 
 
202daa2
84c1430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Shortened LLaMA Model Card

Shortened LLaMA is a depth-pruned version of LLaMA models & variants for efficient text generation.

- **Developed by:** [Nota AI](https://www.nota.ai/)
- **License:** Non-commercial license
- **Repository:** https://github.com/Nota-NetsPresso/shortened-llm
- **Paper:** https://arxiv.org/abs/2402.02834

## Compression Method
After identifying unimportant Transformer blocks, we perform one-shot pruning and light LoRA-based retraining.
<details>
<summary>
Click to see a method figure.
</summary>

<img alt="method" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st-llama_method.png" width="100%">

</details>

## Model Links
  | Source<br>Model | Pruning<br>Ratio | Pruning<br>Criterion | HF Models<br>Link |
  |:---:|:---:|:---:|:---:|
  | LLaMA-1-7B | 20% | PPL | [nota-ai/st-llama-1-5.5b-ppl](https://huggingface.co/nota-ai/st-llama-1-5.5b-ppl) |
  | LLaMA-1-7B | 20% | Taylor+ | [nota-ai/st-llama-1-5.5b-taylor](https://huggingface.co/nota-ai/st-llama-1-5.5b-taylor) |
  | Vicuna-v1.3-7B | 20% | PPL | [nota-ai/st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-ppl) |
  | Vicuna-v1.3-7B | 20% | Taylor+ | [nota-ai/st-vicuna-v1.3-5.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-taylor) |
  | Vicuna-v1.3-13B | 21% | PPL | [nota-ai/st-vicuna-v1.3-10.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-ppl) |
  | Vicuna-v1.3-13B | 21% | Taylor+ | [nota-ai/st-vicuna-v1.3-10.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-taylor) |

## Zero-shot Performance & Efficiency Results
- EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c)

<img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st-llama_zero-shot_scores.png" width="100%">

## License
- All rights related to this repository and the compressed models are reserved by Nota Inc.
- The intended use is strictly limited to research and non-commercial projects.

## Acknowledgments
- [LLM-Pruner](https://github.com/horseee/LLM-Pruner), which utilizes [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness), [PEFT](https://github.com/huggingface/peft), and [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Thanks for the pioneering work on structured pruning of LLMs! 
- Meta AI's [LLaMA](https://github.com/facebookresearch/llama) and  LMSYS Org's [Vicuna](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). Thanks for the open-source LLMs!

## Citation
```bibtex
@article{kim2024shortened,
  title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models},
  author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
  journal={arXiv preprint arXiv:2402.02834},      
  year={2024},
  url={https://arxiv.org/abs/2402.02834}
}
```
```bibtex
@article{kim2024mefomo,
  title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models},
  author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
  journal={ICLR Workshop on Mathematical and Empirical Understanding of Foundation Models (ME-FoMo)},
  year={2024},
  url={https://openreview.net/forum?id=18VGxuOdpu}
}
```