--- language: - tr license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - custom metrics: - wer model-index: - name: Whisper large tr - baki results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: custom type: custom args: 'config: tr, split: test' metrics: - name: Wer type: wer value: 90.93493367024637 --- # Whisper large tr - baki This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the custom dataset. It achieves the following results on the evaluation set: - Loss: 2.0105 - Wer: 90.9349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 40 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.1523 | 0.9615 | 100 | 2.1371 | 117.2773 | | 1.5102 | 1.9231 | 200 | 1.9995 | 93.6829 | | 1.1534 | 2.8846 | 300 | 2.0105 | 90.9349 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1