--- license: mit language: - en --- This model is a fine-tuned version of Llama2-7B described in our paper **RAG-LER: Ranking Adapted Generation with Language-Model Enabled Regulation**. ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("notoookay/ragler-llama2-7b") model = AutoModelForCausalLM.from_pretrained("notoookay/ragler-llama2-7b", torch_dtype=torch.bfloat16, device_map="auto") # Example usage input_text = "### Instruction:\nAnswer the following question.\n\n### Input:\nQuestion:\nWhat is the capital of France?\n\n### Response:\n" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0])) ``` The corresponding re-ranker supervised by this model can be found [here](https://huggingface.co/notoookay/ragler-llama2-7b-reranker).