--- license: apache-2.0 base_model: facebook/hubert-large-ll60k tags: - generated_from_trainer metrics: - wer model-index: - name: HuBERT_Jibbali_lang results: [] --- # HuBERT_Jibbali_lang This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2017 - Wer: 0.1944 - Cet: 0.1189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cet | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 10.6563 | 0.99 | 56 | 5.6577 | 1.0 | 0.9812 | | 3.3895 | 2.0 | 113 | 3.2018 | 1.0 | 0.9812 | | 3.1588 | 2.99 | 169 | 3.1347 | 1.0 | 0.9812 | | 3.1308 | 4.0 | 226 | 3.0567 | 1.0 | 0.9812 | | 2.8933 | 4.99 | 282 | 2.8226 | 1.0 | 0.9353 | | 2.5444 | 6.0 | 339 | 2.0947 | 1.0 | 0.8588 | | 0.995 | 6.99 | 395 | 0.5049 | 0.4974 | 0.1654 | | 0.3567 | 8.0 | 452 | 0.2622 | 0.2485 | 0.1132 | | 0.2914 | 8.99 | 508 | 0.1980 | 0.2105 | 0.0749 | | 0.14 | 10.0 | 565 | 0.2154 | 0.2069 | 0.0821 | | 0.1442 | 10.99 | 621 | 0.1965 | 0.1988 | 0.0969 | | 0.1401 | 12.0 | 678 | 0.2135 | 0.1937 | 0.0960 | | 0.1019 | 12.99 | 734 | 0.2185 | 0.1948 | 0.1094 | | 0.1088 | 14.0 | 791 | 0.1957 | 0.1966 | 0.1121 | | 0.1314 | 14.99 | 847 | 0.1983 | 0.1933 | 0.1019 | | 0.0522 | 16.0 | 904 | 0.2026 | 0.1944 | 0.1258 | | 0.126 | 16.99 | 960 | 0.2033 | 0.1944 | 0.1142 | | 0.1028 | 18.0 | 1017 | 0.1940 | 0.1974 | 0.1158 | | 0.0767 | 18.99 | 1073 | 0.1969 | 0.1948 | 0.1149 | | 0.0468 | 19.82 | 1120 | 0.2017 | 0.1944 | 0.1189 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2