--- license: apache-2.0 base_model: facebook/hubert-large-ll60k tags: - generated_from_trainer metrics: - wer model-index: - name: huber_arabic_mdd_v2 results: [] --- # huber_arabic_mdd_v2 This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2858 - Wer: 0.0564 - Cer: 0.0459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 3.3219 | 0.9951 | 102 | 3.2861 | 1.0 | 1.0 | | 3.2152 | 2.0 | 205 | 3.1685 | 1.0 | 1.0 | | 2.5507 | 2.9951 | 307 | 2.3708 | 0.9718 | 0.9819 | | 0.5766 | 4.0 | 410 | 0.6351 | 0.2216 | 0.2046 | | 0.2255 | 4.9951 | 512 | 0.3469 | 0.0889 | 0.0740 | | 0.1148 | 6.0 | 615 | 0.3393 | 0.0776 | 0.0635 | | 0.1222 | 6.9951 | 717 | 0.3368 | 0.0688 | 0.0535 | | 0.075 | 8.0 | 820 | 0.2846 | 0.0610 | 0.0479 | | 0.0631 | 8.9951 | 922 | 0.2948 | 0.0589 | 0.0453 | | 0.0365 | 10.0 | 1025 | 0.2657 | 0.0552 | 0.0432 | | 0.0484 | 10.9951 | 1127 | 0.2631 | 0.0573 | 0.0458 | | 0.046 | 12.0 | 1230 | 0.2817 | 0.0572 | 0.0462 | | 0.0326 | 12.9951 | 1332 | 0.2807 | 0.0587 | 0.0473 | | 0.0379 | 14.0 | 1435 | 0.2682 | 0.0590 | 0.0479 | | 0.0328 | 14.9951 | 1537 | 0.2773 | 0.0545 | 0.0440 | | 0.0398 | 16.0 | 1640 | 0.2727 | 0.0576 | 0.0462 | | 0.0165 | 16.9951 | 1742 | 0.2844 | 0.0573 | 0.0466 | | 0.0201 | 18.0 | 1845 | 0.2812 | 0.0564 | 0.0455 | | 0.0207 | 18.9951 | 1947 | 0.2860 | 0.0569 | 0.0465 | | 0.0194 | 19.9024 | 2040 | 0.2858 | 0.0564 | 0.0459 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1