update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec2-large-xls-r-300m-Arabic-phoneme
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec2-large-xls-r-300m-Arabic-phoneme
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0131
|
18 |
+
- Cer: 0.0698
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0005
|
38 |
+
- train_batch_size: 6
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 4
|
42 |
+
- total_train_batch_size: 24
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 250
|
46 |
+
- num_epochs: 30
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| 3.7128 | 1.0 | 136 | 3.4914 | 0.9731 |
|
54 |
+
| 2.99 | 2.0 | 272 | 3.2392 | 0.9731 |
|
55 |
+
| 1.8777 | 3.0 | 408 | 1.0871 | 0.4466 |
|
56 |
+
| 0.5067 | 4.0 | 544 | 0.2068 | 0.1338 |
|
57 |
+
| 0.1711 | 5.0 | 680 | 0.0875 | 0.0913 |
|
58 |
+
| 0.0905 | 6.0 | 816 | 0.0734 | 0.0843 |
|
59 |
+
| 0.0712 | 7.0 | 952 | 0.0433 | 0.0770 |
|
60 |
+
| 0.0535 | 8.0 | 1088 | 0.0314 | 0.0733 |
|
61 |
+
| 0.0502 | 9.0 | 1224 | 0.0345 | 0.0752 |
|
62 |
+
| 0.0501 | 10.0 | 1360 | 0.0265 | 0.0741 |
|
63 |
+
| 0.0446 | 11.0 | 1496 | 0.0326 | 0.0741 |
|
64 |
+
| 0.0348 | 12.0 | 1632 | 0.0340 | 0.0763 |
|
65 |
+
| 0.046 | 13.0 | 1768 | 0.0250 | 0.0735 |
|
66 |
+
| 0.0316 | 14.0 | 1904 | 0.0480 | 0.0860 |
|
67 |
+
| 0.0198 | 15.0 | 2040 | 0.0267 | 0.0736 |
|
68 |
+
| 0.0209 | 16.0 | 2176 | 0.0173 | 0.0713 |
|
69 |
+
| 0.0131 | 17.0 | 2312 | 0.0204 | 0.0714 |
|
70 |
+
| 0.0184 | 18.0 | 2448 | 0.0183 | 0.0707 |
|
71 |
+
| 0.0136 | 19.0 | 2584 | 0.0245 | 0.0717 |
|
72 |
+
| 0.0165 | 20.0 | 2720 | 0.0200 | 0.0737 |
|
73 |
+
| 0.012 | 21.0 | 2856 | 0.0152 | 0.0703 |
|
74 |
+
| 0.0124 | 22.0 | 2992 | 0.0149 | 0.0703 |
|
75 |
+
| 0.0118 | 23.0 | 3128 | 0.0168 | 0.0711 |
|
76 |
+
| 0.0087 | 24.0 | 3264 | 0.0139 | 0.0702 |
|
77 |
+
| 0.0077 | 25.0 | 3400 | 0.0128 | 0.0696 |
|
78 |
+
| 0.0103 | 26.0 | 3536 | 0.0121 | 0.0696 |
|
79 |
+
| 0.0059 | 27.0 | 3672 | 0.0131 | 0.0700 |
|
80 |
+
| 0.0058 | 28.0 | 3808 | 0.0129 | 0.0699 |
|
81 |
+
| 0.0067 | 29.0 | 3944 | 0.0132 | 0.0700 |
|
82 |
+
| 0.0055 | 30.0 | 4080 | 0.0131 | 0.0698 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.26.1
|
88 |
+
- Pytorch 1.13.1+cu116
|
89 |
+
- Datasets 2.10.1
|
90 |
+
- Tokenizers 0.13.2
|