Model save
Browse files
README.md
CHANGED
@@ -3,6 +3,8 @@ license: apache-2.0
|
|
3 |
base_model: facebook/wav2vec2-xls-r-300m
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
model-index:
|
7 |
- name: wav2vec2-large-xls-r-300m-Arabic-phoneme
|
8 |
results: []
|
@@ -13,10 +15,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# wav2vec2-large-xls-r-300m-Arabic-phoneme
|
15 |
|
16 |
-
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
- Per: 0.
|
|
|
20 |
|
21 |
## Model description
|
22 |
|
@@ -48,43 +51,43 @@ The following hyperparameters were used during training:
|
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
-
| Training Loss | Epoch | Step | Validation Loss | Per |
|
52 |
-
|
53 |
-
| 5.
|
54 |
-
| 2.
|
55 |
-
| 2.
|
56 |
-
| 1.
|
57 |
-
| 1.
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
|
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
|
84 |
|
85 |
### Framework versions
|
86 |
|
87 |
-
- Transformers 4.
|
88 |
- Pytorch 2.0.1+cu118
|
89 |
- Datasets 1.18.3
|
90 |
- Tokenizers 0.13.3
|
|
|
3 |
base_model: facebook/wav2vec2-xls-r-300m
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
model-index:
|
9 |
- name: wav2vec2-large-xls-r-300m-Arabic-phoneme
|
10 |
results: []
|
|
|
15 |
|
16 |
# wav2vec2-large-xls-r-300m-Arabic-phoneme
|
17 |
|
18 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0335
|
21 |
+
- Per: 0.0199
|
22 |
+
- Wer: 0.0225
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Per | Wer |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
56 |
+
| 5.3718 | 1.0 | 102 | 2.1140 | 1.0 | 1.0 |
|
57 |
+
| 2.036 | 2.0 | 204 | 2.0637 | 1.0 | 1.0 |
|
58 |
+
| 2.0175 | 3.0 | 306 | 2.1252 | 1.0 | 1.0 |
|
59 |
+
| 1.9463 | 4.0 | 408 | 1.7014 | 0.9942 | 0.9887 |
|
60 |
+
| 1.702 | 5.0 | 510 | 1.7257 | 0.9944 | 0.9892 |
|
61 |
+
| 1.6475 | 6.0 | 612 | 1.5855 | 0.9897 | 0.9798 |
|
62 |
+
| 1.4766 | 7.0 | 714 | 1.2777 | 0.9787 | 0.9641 |
|
63 |
+
| 1.0363 | 8.0 | 816 | 0.7926 | 0.7738 | 0.7731 |
|
64 |
+
| 0.5964 | 9.0 | 918 | 0.4220 | 0.3994 | 0.4133 |
|
65 |
+
| 0.3437 | 10.0 | 1020 | 0.2307 | 0.1387 | 0.1549 |
|
66 |
+
| 0.2052 | 11.0 | 1122 | 0.1587 | 0.0645 | 0.0738 |
|
67 |
+
| 0.1509 | 12.0 | 1224 | 0.1314 | 0.0464 | 0.0544 |
|
68 |
+
| 0.1256 | 13.0 | 1326 | 0.1070 | 0.0448 | 0.0518 |
|
69 |
+
| 0.0935 | 14.0 | 1428 | 0.0854 | 0.0394 | 0.0452 |
|
70 |
+
| 0.0779 | 15.0 | 1530 | 0.0896 | 0.0376 | 0.0440 |
|
71 |
+
| 0.0674 | 16.0 | 1632 | 0.0625 | 0.0255 | 0.0306 |
|
72 |
+
| 0.0558 | 17.0 | 1734 | 0.0573 | 0.0270 | 0.0318 |
|
73 |
+
| 0.0492 | 18.0 | 1836 | 0.0542 | 0.0248 | 0.0288 |
|
74 |
+
| 0.0486 | 19.0 | 1938 | 0.0631 | 0.0336 | 0.0369 |
|
75 |
+
| 0.047 | 20.0 | 2040 | 0.0482 | 0.0255 | 0.0290 |
|
76 |
+
| 0.0432 | 21.0 | 2142 | 0.0470 | 0.0262 | 0.0307 |
|
77 |
+
| 0.0433 | 22.0 | 2244 | 0.0460 | 0.0250 | 0.0290 |
|
78 |
+
| 0.0367 | 23.0 | 2346 | 0.0450 | 0.0253 | 0.0295 |
|
79 |
+
| 0.0343 | 24.0 | 2448 | 0.0444 | 0.0254 | 0.0283 |
|
80 |
+
| 0.0292 | 25.0 | 2550 | 0.0427 | 0.0248 | 0.0283 |
|
81 |
+
| 0.0261 | 26.0 | 2652 | 0.0409 | 0.0220 | 0.0250 |
|
82 |
+
| 0.025 | 27.0 | 2754 | 0.0360 | 0.0221 | 0.0251 |
|
83 |
+
| 0.0236 | 28.0 | 2856 | 0.0350 | 0.0208 | 0.0231 |
|
84 |
+
| 0.0222 | 29.0 | 2958 | 0.0338 | 0.0199 | 0.0222 |
|
85 |
+
| 0.0202 | 30.0 | 3060 | 0.0335 | 0.0199 | 0.0225 |
|
86 |
|
87 |
|
88 |
### Framework versions
|
89 |
|
90 |
+
- Transformers 4.33.1
|
91 |
- Pytorch 2.0.1+cu118
|
92 |
- Datasets 1.18.3
|
93 |
- Tokenizers 0.13.3
|