Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -10.80 +/- 4.97
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48d375f1fd69992521682afefc72b0bf8e40f0072e8c0168466e095672c109bb
|
3 |
+
size 108013
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.00096,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0cc2649670>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f0cc264c0f0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 3000000,
|
45 |
+
"_total_timesteps": 3000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1674496800109913425,
|
50 |
"learning_rate": 0.00096,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+VtJPzSpYD2xuHc/+VtJPzSpYD2xuHc/+VtJPzSpYD2xuHc/+VtJPzSpYD2xuHc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcZSYPuS6Sr9djNq/5fbBv786E76Js4O/umwlP6gi075EkNi/hxqFv7MGhr/XQce/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD5W0k/NKlgPbG4dz9XJTY9LyJuu6pzcj35W0k/NKlgPbG4dz9XJTY9LyJuu6pzcj35W0k/NKlgPbG4dz9XJTY9LyJuu6pzcj35W0k/NKlgPbG4dz9XJTY9LyJuu6pzcj2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.78655964 0.05484886 0.9676619 ]\n [0.78655964 0.05484886 0.9676619 ]\n [0.78655964 0.05484886 0.9676619 ]\n [0.78655964 0.05484886 0.9676619 ]]",
|
60 |
+
"desired_goal": "[[ 0.29800752 -0.7919142 -1.7074085 ]\n [-1.5153471 -0.14377879 -1.0289165 ]\n [ 0.6461903 -0.41237378 -1.6919026 ]\n [-1.039872 -1.0470794 -1.5566968 ]]",
|
61 |
+
"observation": "[[ 0.78655964 0.05484886 0.9676619 0.0444692 -0.00363363 0.05919234]\n [ 0.78655964 0.05484886 0.9676619 0.0444692 -0.00363363 0.05919234]\n [ 0.78655964 0.05484886 0.9676619 0.0444692 -0.00363363 0.05919234]\n [ 0.78655964 0.05484886 0.9676619 0.0444692 -0.00363363 0.05919234]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6mQHvISwrz2K9dI958ajvVsQwzzGlFw+9OqIPfuCe71snrA9wIULvbVbtj2I+Cg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.00826381 0.0857859 0.10300739]\n [-0.07996922 0.02381151 0.21541128]\n [ 0.06685439 -0.06140421 0.08623967]\n [-0.0340631 0.0890421 0.16501057]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+wJ64c6tKsCUhpRSlIwBbJRLMowBdJRHQLxaZFI/Z/V1fZQoaAZoCWgPQwi7mGa616klwJSGlFKUaBVLMmgWR0C8WkZy6tkndX2UKGgGaAloD0MIHuIftvTYH8CUhpRSlGgVSzJoFkdAvFoXiZOSGXV9lChoBmgJaA9DCIwwRbk0jhbAlIaUUpRoFUsyaBZHQLxZ6bpeNT91fZQoaAZoCWgPQwh+/RAbLGwlwJSGlFKUaBVLMmgWR0C8WtvznRsudX2UKGgGaAloD0MIXHFxVG46LsCUhpRSlGgVSzJoFkdAvFq9wvQF93V9lChoBmgJaA9DCIOnkCv17CXAlIaUUpRoFUsyaBZHQLxajsZpBX11fZQoaAZoCWgPQwgmjdE6qlodwJSGlFKUaBVLMmgWR0C8WmC6xxDLdX2UKGgGaAloD0MIc6Hyr+UJNMCUhpRSlGgVSzJoFkdAvFtd7CzkZXV9lChoBmgJaA9DCM6LE1/teB/AlIaUUpRoFUsyaBZHQLxbP7zkIX11fZQoaAZoCWgPQwhCl3DoLeYgwJSGlFKUaBVLMmgWR0C8WxCoKlYVdX2UKGgGaAloD0MIwhN6/UkgM8CUhpRSlGgVSzJoFkdAvFrihRIjGHV9lChoBmgJaA9DCJP8iF+xbiDAlIaUUpRoFUsyaBZHQLxb0CFsYVJ1fZQoaAZoCWgPQwjvAiUFFrgowJSGlFKUaBVLMmgWR0C8W7H+ERJ3dX2UKGgGaAloD0MIHeT1YFKsE8CUhpRSlGgVSzJoFkdAvFuC7btZ3nV9lChoBmgJaA9DCFzMzw1NkSbAlIaUUpRoFUsyaBZHQLxbVKqn3td1fZQoaAZoCWgPQwiQSUbOwo4lwJSGlFKUaBVLMmgWR0C8XE5qIrOJdX2UKGgGaAloD0MIRtEDH4NFIsCUhpRSlGgVSzJoFkdAvFwwo9cKPXV9lChoBmgJaA9DCENTdvpBsTHAlIaUUpRoFUsyaBZHQLxcAbW3BpJ1fZQoaAZoCWgPQwj7XdiarZwawJSGlFKUaBVLMmgWR0C8W9N/z8P4dX2UKGgGaAloD0MIKEnXTL6hIMCUhpRSlGgVSzJoFkdAvFzCaLGaQXV9lChoBmgJaA9DCH79EBssxCPAlIaUUpRoFUsyaBZHQLxcpGTcIqt1fZQoaAZoCWgPQwjScMrcfLMhwJSGlFKUaBVLMmgWR0C8XHVRtP56dX2UKGgGaAloD0MII/jfSnZ8KsCUhpRSlGgVSzJoFkdAvFxHSx7iQ3V9lChoBmgJaA9DCGPQCaGDzirAlIaUUpRoFUsyaBZHQLxdPN0vGqB1fZQoaAZoCWgPQwj1vvG1Z+4ywJSGlFKUaBVLMmgWR0C8XR83Mpw0dX2UKGgGaAloD0MIVfgzvFkLIsCUhpRSlGgVSzJoFkdAvFzwbp/wzHV9lChoBmgJaA9DCCiCOA8nQB/AlIaUUpRoFUsyaBZHQLxcwmSyMUB1fZQoaAZoCWgPQwh8RiI0gjkxwJSGlFKUaBVLMmgWR0C8XceTeO4odX2UKGgGaAloD0MIvRx23zEENsCUhpRSlGgVSzJoFkdAvF2pz7uUlnV9lChoBmgJaA9DCJfGL7ySxCDAlIaUUpRoFUsyaBZHQLxdesLORkp1fZQoaAZoCWgPQwiXHeIftpwwwJSGlFKUaBVLMmgWR0C8XUzRtxdZdX2UKGgGaAloD0MID0JAvoRSI8CUhpRSlGgVSzJoFkdAvF411RtP6HV9lChoBmgJaA9DCLVSCOQS3yHAlIaUUpRoFUsyaBZHQLxeGBwdbPh1fZQoaAZoCWgPQwisN2qF6fMpwJSGlFKUaBVLMmgWR0C8XekZR8+idX2UKGgGaAloD0MIZyrEI/EaJMCUhpRSlGgVSzJoFkdAvF265PM0QHV9lChoBmgJaA9DCMMoCB7fJjPAlIaUUpRoFUsyaBZHQLxeufQ8fV91fZQoaAZoCWgPQwh48umxLe81wJSGlFKUaBVLMmgWR0C8Xpv/WDpUdX2UKGgGaAloD0MIs9DOaRZgMsCUhpRSlGgVSzJoFkdAvF5s8V58jXV9lChoBmgJaA9DCJRnXg67hybAlIaUUpRoFUsyaBZHQLxePrJr+Hd1fZQoaAZoCWgPQwhLcyuE1QQywJSGlFKUaBVLMmgWR0C8XzM1fmcOdX2UKGgGaAloD0MIthSQ9j8wJ8CUhpRSlGgVSzJoFkdAvF8VDZ13dXV9lChoBmgJaA9DCDW1bK0vGiLAlIaUUpRoFUsyaBZHQLxe5gAIY3x1fZQoaAZoCWgPQwi8H7dfPqElwJSGlFKUaBVLMmgWR0C8Xrfp2U0OdX2UKGgGaAloD0MIdnCwNzHIMMCUhpRSlGgVSzJoFkdAvF+mzY287XV9lChoBmgJaA9DCMcvvJLkuRvAlIaUUpRoFUsyaBZHQLxfiKrq+rV1fZQoaAZoCWgPQwia6sn8oz8cwJSGlFKUaBVLMmgWR0C8X1mrfcesdX2UKGgGaAloD0MINIKN699tIcCUhpRSlGgVSzJoFkdAvF8rgbZOBXV9lChoBmgJaA9DCOARFaqb+x3AlIaUUpRoFUsyaBZHQLxgH5Lh73R1fZQoaAZoCWgPQwgpCYm0jX8mwJSGlFKUaBVLMmgWR0C8YAFqzqrzdX2UKGgGaAloD0MIpaKx9nc+J8CUhpRSlGgVSzJoFkdAvF/SXnhbW3V9lChoBmgJaA9DCEBqEyf3mx3AlIaUUpRoFUsyaBZHQLxfpJbt7a91fZQoaAZoCWgPQwjj/iPToQcxwJSGlFKUaBVLMmgWR0C8YJrxmTTwdX2UKGgGaAloD0MImMCtu3kaLMCUhpRSlGgVSzJoFkdAvGB82FWXC3V9lChoBmgJaA9DCLgHISBfMinAlIaUUpRoFUsyaBZHQLxgTcjqv/11fZQoaAZoCWgPQwj3ItqOqQsrwJSGlFKUaBVLMmgWR0C8YB+VTrE+dX2UKGgGaAloD0MIkbQbfcw7MsCUhpRSlGgVSzJoFkdAvGES3XqZ+nV9lChoBmgJaA9DCHe+nxovXQ3AlIaUUpRoFUsyaBZHQLxg9K2rn1Z1fZQoaAZoCWgPQwg5miMrvxwawJSGlFKUaBVLMmgWR0C8YMWPDHfedX2UKGgGaAloD0MIUtfa+1TVG8CUhpRSlGgVSzJoFkdAvGCXVDrquHV9lChoBmgJaA9DCAABa9WukSPAlIaUUpRoFUsyaBZHQLxhgpKzzEt1fZQoaAZoCWgPQwi5iVqaW2kiwJSGlFKUaBVLMmgWR0C8YWRoEjgRdX2UKGgGaAloD0MI7L/OTZthHsCUhpRSlGgVSzJoFkdAvGE1T850bXV9lChoBmgJaA9DCLMkQE0tgyXAlIaUUpRoFUsyaBZHQLxhBx1gYxd1fZQoaAZoCWgPQwg4SfPHtLYpwJSGlFKUaBVLMmgWR0C8YfORxLkCdX2UKGgGaAloD0MIrBxaZDtvJsCUhpRSlGgVSzJoFkdAvGHVa3ZwoHV9lChoBmgJaA9DCMBbIEHxwyHAlIaUUpRoFUsyaBZHQLxhplchTwV1fZQoaAZoCWgPQwjbatYZ33ccwJSGlFKUaBVLMmgWR0C8YXhYJVsDdX2UKGgGaAloD0MI+nyUERd8NsCUhpRSlGgVSzJoFkdAvGJsixFAmnV9lChoBmgJaA9DCJJYUu4+dyjAlIaUUpRoFUsyaBZHQLxiTnhbW3B1fZQoaAZoCWgPQwjNkZVfBlMswJSGlFKUaBVLMmgWR0C8Yh9sJpnIdX2UKGgGaAloD0MIYcPTK2VZJcCUhpRSlGgVSzJoFkdAvGHxNXYDknV9lChoBmgJaA9DCHTTZpyGOCjAlIaUUpRoFUsyaBZHQLxi5Cpm29d1fZQoaAZoCWgPQwhLkXwlkGouwJSGlFKUaBVLMmgWR0C8YsYYFaB7dX2UKGgGaAloD0MIbO7of7l2KcCUhpRSlGgVSzJoFkdAvGKXOu7pV3V9lChoBmgJaA9DCGTqruyCYSrAlIaUUpRoFUsyaBZHQLxiaQP7N0N1fZQoaAZoCWgPQwiOWItPAWAgwJSGlFKUaBVLMmgWR0C8Y148+zMSdX2UKGgGaAloD0MI3pGx2vxnK8CUhpRSlGgVSzJoFkdAvGNAKmbb13V9lChoBmgJaA9DCGB0eXO4xh7AlIaUUpRoFUsyaBZHQLxjEULDye91fZQoaAZoCWgPQwh7Tnrf+L42wJSGlFKUaBVLMmgWR0C8YuNYW+GodX2UKGgGaAloD0MIVMTpJFu9IsCUhpRSlGgVSzJoFkdAvGPcwfyPMnV9lChoBmgJaA9DCCR7hJohSTXAlIaUUpRoFUsyaBZHQLxjvvAXVLB1fZQoaAZoCWgPQwg3+wPltk0iwJSGlFKUaBVLMmgWR0C8Y4/bCaZydX2UKGgGaAloD0MI5KHvbmVJNcCUhpRSlGgVSzJoFkdAvGNh3JPqLXV9lChoBmgJaA9DCGyWy0bnfBrAlIaUUpRoFUsyaBZHQLxkUcYIjW11fZQoaAZoCWgPQwg1zxH5LvUkwJSGlFKUaBVLMmgWR0C8ZDOcH4XXdX2UKGgGaAloD0MIT+W0p+QcF8CUhpRSlGgVSzJoFkdAvGQEjRlYl3V9lChoBmgJaA9DCO4HPDCA8BvAlIaUUpRoFUsyaBZHQLxj1lyBCld1fZQoaAZoCWgPQwgOEw1S8DQgwJSGlFKUaBVLMmgWR0C8ZNCXD3uedX2UKGgGaAloD0MI3CkdrP9jNMCUhpRSlGgVSzJoFkdAvGSywdKdx3V9lChoBmgJaA9DCOay0Tk/VSvAlIaUUpRoFUsyaBZHQLxkg7Omixp1fZQoaAZoCWgPQwjZeRubHakzwJSGlFKUaBVLMmgWR0C8ZFWKEWZadX2UKGgGaAloD0MI5E7pYP3vHMCUhpRSlGgVSzJoFkdAvGVce5nUUnV9lChoBmgJaA9DCMOgTKPJ9SDAlIaUUpRoFUsyaBZHQLxlPlGPPs11fZQoaAZoCWgPQwi4sdmR6gsswJSGlFKUaBVLMmgWR0C8ZQ+ZCv5hdX2UKGgGaAloD0MIonprYKvwM8CUhpRSlGgVSzJoFkdAvGThnxri2nV9lChoBmgJaA9DCPaVB+kpijfAlIaUUpRoFUsyaBZHQLxl2KEnLJV1fZQoaAZoCWgPQwiZucDlscYjwJSGlFKUaBVLMmgWR0C8Zbp57gKndX2UKGgGaAloD0MI+P9xwoTRIsCUhpRSlGgVSzJoFkdAvGWLafzz3HV9lChoBmgJaA9DCI/Ey9O59jLAlIaUUpRoFUsyaBZHQLxlXYmsvIx1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 150000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e95f12a5326f12a56de4ad338f4cb01c367199be3d0833959462914eb21d89ff
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:933494cf17a7249cbddb5e1ef74e958edd6f678aff2097c5705784906c33a9ba
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff393b651f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff393b5e8a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674380855775022767, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcMzBPmZOkj33YRo/cMzBPmZOkj33YRo/cMzBPmZOkj33YRo/cMzBPmZOkj33YRo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAa0Nxv2jXt7/DGVs9sN1Av/1dgL/Pakw/0id9PmRLgz9g64q+02dzven9qL4P+bo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABwzME+Zk6SPfdhGj+BxYa8leyeO0PojrtwzME+Zk6SPfdhGj+BxYa8leyeO0PojrtwzME+Zk6SPfdhGj+BxYa8leyeO0PojrtwzME+Zk6SPfdhGj+BxYa8leyeO0PojruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.37851286 0.0714386 0.6030573 ]\n [0.37851286 0.0714386 0.6030573 ]\n [0.37851286 0.0714386 0.6030573 ]\n [0.37851286 0.0714386 0.6030573 ]]", "desired_goal": "[[-0.94243497 -1.4362612 0.05349137]\n [-0.7533827 -1.0028683 0.79850477]\n [ 0.24722221 1.0257382 -0.27132702]\n [-0.05942519 -0.33006218 1.4607257 ]]", "observation": "[[ 0.37851286 0.0714386 0.6030573 -0.0164516 0.00484998 -0.00436118]\n [ 0.37851286 0.0714386 0.6030573 -0.0164516 0.00484998 -0.00436118]\n [ 0.37851286 0.0714386 0.6030573 -0.0164516 0.00484998 -0.00436118]\n [ 0.37851286 0.0714386 0.6030573 -0.0164516 0.00484998 -0.00436118]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVZ7wPQaMxr0gLWI+uuvPvF6bqD0m5mI+TDpDPSz/6L0nmGI+o9kSPlJ6Sr1eNcc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.11748949 -0.09694676 0.22087526]\n [-0.02538096 0.08232759 0.22158107]\n [ 0.04766302 -0.11376795 0.22128354]\n [ 0.14340834 -0.04943306 0.09726976]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDI/9LJZCCMCUhpRSlIwBbJRLMowBdJRHQKzsltBOYY11fZQoaAZoCWgPQwiZnUXvVDAUwJSGlFKUaBVLMmgWR0Cs7FgQpWmxdX2UKGgGaAloD0MIY5gTtMkhE8CUhpRSlGgVSzJoFkdArOwXLeQ+2XV9lChoBmgJaA9DCHV1x2KbJBnAlIaUUpRoFUsyaBZHQKzr1XDFZPl1fZQoaAZoCWgPQwhKfO4E+z8ZwJSGlFKUaBVLMmgWR0Cs7XMe4kNXdX2UKGgGaAloD0MI6UmZ1NAGEsCUhpRSlGgVSzJoFkdArO009QoCuHV9lChoBmgJaA9DCNwSueAMXgPAlIaUUpRoFUsyaBZHQKzs9EtNBWx1fZQoaAZoCWgPQwheZ0P+mcEEwJSGlFKUaBVLMmgWR0Cs7LKgh8pkdX2UKGgGaAloD0MITfilft40CcCUhpRSlGgVSzJoFkdArO5KhSLqEHV9lChoBmgJaA9DCD2a6sn8AwnAlIaUUpRoFUsyaBZHQKzuC9oN/fB1fZQoaAZoCWgPQwjgERWqm8sZwJSGlFKUaBVLMmgWR0Cs7crteD3/dX2UKGgGaAloD0MIWMudmWBYDMCUhpRSlGgVSzJoFkdArO2JUedTYXV9lChoBmgJaA9DCNjviXWq3AbAlIaUUpRoFUsyaBZHQKzvK9M9KVZ1fZQoaAZoCWgPQwgiiskbYEYWwJSGlFKUaBVLMmgWR0Cs7u1JL/S6dX2UKGgGaAloD0MIhPBo44gVAsCUhpRSlGgVSzJoFkdArO6sY4yXU3V9lChoBmgJaA9DCPGhREseTw7AlIaUUpRoFUsyaBZHQKzuau3c5811fZQoaAZoCWgPQwjbbKzEPJsUwJSGlFKUaBVLMmgWR0Cs8BTD4xk/dX2UKGgGaAloD0MIOuenOA4cF8CUhpRSlGgVSzJoFkdArO/WKZUkwHV9lChoBmgJaA9DCDyh15/E9xfAlIaUUpRoFUsyaBZHQKzvlX9zfaZ1fZQoaAZoCWgPQwjN6h1uhxYQwJSGlFKUaBVLMmgWR0Cs71PKuB+XdX2UKGgGaAloD0MIZY16iEanFsCUhpRSlGgVSzJoFkdArPD6zollb3V9lChoBmgJaA9DCITVWMLaGBfAlIaUUpRoFUsyaBZHQKzwvGZuyeJ1fZQoaAZoCWgPQwhH5/wUx4EQwJSGlFKUaBVLMmgWR0Cs8Hu7HyVfdX2UKGgGaAloD0MItABtq1knEsCUhpRSlGgVSzJoFkdArPA6NZNfxHV9lChoBmgJaA9DCGoV/aGZBxvAlIaUUpRoFUsyaBZHQKzx57CSA6N1fZQoaAZoCWgPQwjaHr3hPvIEwJSGlFKUaBVLMmgWR0Cs8aj7655JdX2UKGgGaAloD0MIMZV+wtktDMCUhpRSlGgVSzJoFkdArPFoHNX5nHV9lChoBmgJaA9DCJ3Ul6Wd2hDAlIaUUpRoFUsyaBZHQKzxJnFo+Oh1fZQoaAZoCWgPQwiAnDBhNEsMwJSGlFKUaBVLMmgWR0Cs8s0UO/cndX2UKGgGaAloD0MIE9VbA1sFGsCUhpRSlGgVSzJoFkdArPKOYc/+sHV9lChoBmgJaA9DCJKRs7CnnQrAlIaUUpRoFUsyaBZHQKzyTaePJaJ1fZQoaAZoCWgPQwjWHCCYowcQwJSGlFKUaBVLMmgWR0Cs8gwT/Q0GdX2UKGgGaAloD0MIknajj/kgF8CUhpRSlGgVSzJoFkdArPOjAgxJunV9lChoBmgJaA9DCO3ShsPSgA7AlIaUUpRoFUsyaBZHQKzzZFaSs8x1fZQoaAZoCWgPQwhUyJV6FgQOwJSGlFKUaBVLMmgWR0Cs8yN1p0wKdX2UKGgGaAloD0MIq1s9J70/FcCUhpRSlGgVSzJoFkdArPLh7TlT33V9lChoBmgJaA9DCLzLRXwnZhDAlIaUUpRoFUsyaBZHQKz0j/NJOFh1fZQoaAZoCWgPQwj3eCEdHkINwJSGlFKUaBVLMmgWR0Cs9FFt0mtydX2UKGgGaAloD0MIDveRW5POBcCUhpRSlGgVSzJoFkdArPQRBsyi23V9lChoBmgJaA9DCOwS1VsD2w3AlIaUUpRoFUsyaBZHQKzzz2kBS1p1fZQoaAZoCWgPQwhLAP4pVUIPwJSGlFKUaBVLMmgWR0Cs9XcMVk+YdX2UKGgGaAloD0MIrp6T3jf+B8CUhpRSlGgVSzJoFkdArPU4SL61s3V9lChoBmgJaA9DCKt7ZHPV/AvAlIaUUpRoFUsyaBZHQKz091f3N9p1fZQoaAZoCWgPQwg6PITx09gbwJSGlFKUaBVLMmgWR0Cs9LXHR1HOdX2UKGgGaAloD0MI1VxuMNShB8CUhpRSlGgVSzJoFkdArPZemBOHnHV9lChoBmgJaA9DCFq4rMJmABrAlIaUUpRoFUsyaBZHQKz2IAGSpzd1fZQoaAZoCWgPQwhtyhXe5cIUwJSGlFKUaBVLMmgWR0Cs9d8kD6nBdX2UKGgGaAloD0MI1ZRkHY5+EsCUhpRSlGgVSzJoFkdArPWdhG6PKnV9lChoBmgJaA9DCBHIJY48EBLAlIaUUpRoFUsyaBZHQKz3VTcZccF1fZQoaAZoCWgPQwjMBwQ6kwYYwJSGlFKUaBVLMmgWR0Cs9xaaTfSAdX2UKGgGaAloD0MIFOeoo+NKBsCUhpRSlGgVSzJoFkdArPbV2Pkq+nV9lChoBmgJaA9DCJ30vvG1FxrAlIaUUpRoFUsyaBZHQKz2lD+BH091fZQoaAZoCWgPQwg7/3bZr1sPwJSGlFKUaBVLMmgWR0Cs+Dv1+RYBdX2UKGgGaAloD0MIe2mKAKc3EsCUhpRSlGgVSzJoFkdArPf9QGfPHHV9lChoBmgJaA9DCFPqknGMxA3AlIaUUpRoFUsyaBZHQKz3vH6Mzdl1fZQoaAZoCWgPQwhnSBXFq3wZwJSGlFKUaBVLMmgWR0Cs93rNnoPkdX2UKGgGaAloD0MIdOrKZ3mOHcCUhpRSlGgVSzJoFkdArPkf+ZPVNHV9lChoBmgJaA9DCEGC4seYuwzAlIaUUpRoFUsyaBZHQKz44WGATZh1fZQoaAZoCWgPQwhTQUXVr/QIwJSGlFKUaBVLMmgWR0Cs+KCQDFIedX2UKGgGaAloD0MImzxlNV2PE8CUhpRSlGgVSzJoFkdArPhe5rgwXnV9lChoBmgJaA9DCKD+s+bHfwTAlIaUUpRoFUsyaBZHQKz6EA93bEh1fZQoaAZoCWgPQwj76xUW3O8CwJSGlFKUaBVLMmgWR0Cs+dFoL5RCdX2UKGgGaAloD0MIA30iT5IOCsCUhpRSlGgVSzJoFkdArPmQydnTRnV9lChoBmgJaA9DCDBLOzWXWxrAlIaUUpRoFUsyaBZHQKz5TyHVPN51fZQoaAZoCWgPQwiYw+47hicKwJSGlFKUaBVLMmgWR0Cs+v6ef7JodX2UKGgGaAloD0MI9katMH2vDMCUhpRSlGgVSzJoFkdArPq/7SApa3V9lChoBmgJaA9DCAdcV8wIDxfAlIaUUpRoFUsyaBZHQKz6fwy6+WZ1fZQoaAZoCWgPQwiflEkNbeASwJSGlFKUaBVLMmgWR0Cs+j1k1/DtdX2UKGgGaAloD0MIzVZe8j/5B8CUhpRSlGgVSzJoFkdArPveaScLB3V9lChoBmgJaA9DCLoVwmoskRXAlIaUUpRoFUsyaBZHQKz7n8zAN5N1fZQoaAZoCWgPQwiV8e8zLuwawJSGlFKUaBVLMmgWR0Cs+18xbjcVdX2UKGgGaAloD0MIcqd0sP7vCcCUhpRSlGgVSzJoFkdArPsdrGipN3V9lChoBmgJaA9DCECJz51gfxPAlIaUUpRoFUsyaBZHQKz8x8gIQe51fZQoaAZoCWgPQwjmXfWAeegRwJSGlFKUaBVLMmgWR0Cs/Im0E5hjdX2UKGgGaAloD0MIRpVh3A0SHcCUhpRSlGgVSzJoFkdArPxJezD4xnV9lChoBmgJaA9DCKIqptJPyBTAlIaUUpRoFUsyaBZHQKz8CHHmzSl1fZQoaAZoCWgPQwjmBG1y+OQOwJSGlFKUaBVLMmgWR0Cs/azZ6D5CdX2UKGgGaAloD0MICB7f3jWIBMCUhpRSlGgVSzJoFkdArP1uYIBzWHV9lChoBmgJaA9DCOARFaqbOxnAlIaUUpRoFUsyaBZHQKz9LY150KZ1fZQoaAZoCWgPQwjHZHH/kQkUwJSGlFKUaBVLMmgWR0Cs/OvXCj1xdX2UKGgGaAloD0MIYDsYsU8gEcCUhpRSlGgVSzJoFkdArP6PyGzrvHV9lChoBmgJaA9DCOOkMO9xRhfAlIaUUpRoFUsyaBZHQKz+UTviLl51fZQoaAZoCWgPQwhQptHkYuwLwJSGlFKUaBVLMmgWR0Cs/hBY/3WXdX2UKGgGaAloD0MIKes3E9OlD8CUhpRSlGgVSzJoFkdArP3Onl4keXV9lChoBmgJaA9DCCJQ/YNIRhPAlIaUUpRoFUsyaBZHQKz/dBsyi251fZQoaAZoCWgPQwhxOslWl/MQwJSGlFKUaBVLMmgWR0Cs/zV+iJwbdX2UKGgGaAloD0MIyk4/qItUDcCUhpRSlGgVSzJoFkdArP70oa1kUnV9lChoBmgJaA9DCPQXesTomQnAlIaUUpRoFUsyaBZHQKz+swL3K0V1fZQoaAZoCWgPQwjMBwQ6k3YMwJSGlFKUaBVLMmgWR0CtAFi3XqZ/dX2UKGgGaAloD0MIvwzGiETBEcCUhpRSlGgVSzJoFkdArQAaMefZmXV9lChoBmgJaA9DCNKm6h7ZTBLAlIaUUpRoFUsyaBZHQKz/2YgJTl11fZQoaAZoCWgPQwgkK78MxigVwJSGlFKUaBVLMmgWR0Cs/5f2saKldX2UKGgGaAloD0MI7kCd8uimGMCUhpRSlGgVSzJoFkdArQE2hoM8YHV9lChoBmgJaA9DCJ5flKC/UBvAlIaUUpRoFUsyaBZHQK0A98E3bVV1fZQoaAZoCWgPQwjJ6IAk7HsVwJSGlFKUaBVLMmgWR0CtALbTMJQddX2UKGgGaAloD0MIJZNTO8OEE8CUhpRSlGgVSzJoFkdArQB1MyrPt3V9lChoBmgJaA9DCL9GkiBcYQnAlIaUUpRoFUsyaBZHQK0CLJI1+Ap1fZQoaAZoCWgPQwg0Tdh+MuYMwJSGlFKUaBVLMmgWR0CtAe3LFGXpdX2UKGgGaAloD0MIo8wGmWRkEcCUhpRSlGgVSzJoFkdArQGs6RyOrHV9lChoBmgJaA9DCAkZyLPLFxPAlIaUUpRoFUsyaBZHQK0BazE74i51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0cc2649670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0cc264c0f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674496800109913425, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+VtJPzSpYD2xuHc/+VtJPzSpYD2xuHc/+VtJPzSpYD2xuHc/+VtJPzSpYD2xuHc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcZSYPuS6Sr9djNq/5fbBv786E76Js4O/umwlP6gi075EkNi/hxqFv7MGhr/XQce/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD5W0k/NKlgPbG4dz9XJTY9LyJuu6pzcj35W0k/NKlgPbG4dz9XJTY9LyJuu6pzcj35W0k/NKlgPbG4dz9XJTY9LyJuu6pzcj35W0k/NKlgPbG4dz9XJTY9LyJuu6pzcj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.78655964 0.05484886 0.9676619 ]\n [0.78655964 0.05484886 0.9676619 ]\n [0.78655964 0.05484886 0.9676619 ]\n [0.78655964 0.05484886 0.9676619 ]]", "desired_goal": "[[ 0.29800752 -0.7919142 -1.7074085 ]\n [-1.5153471 -0.14377879 -1.0289165 ]\n [ 0.6461903 -0.41237378 -1.6919026 ]\n [-1.039872 -1.0470794 -1.5566968 ]]", "observation": "[[ 0.78655964 0.05484886 0.9676619 0.0444692 -0.00363363 0.05919234]\n [ 0.78655964 0.05484886 0.9676619 0.0444692 -0.00363363 0.05919234]\n [ 0.78655964 0.05484886 0.9676619 0.0444692 -0.00363363 0.05919234]\n [ 0.78655964 0.05484886 0.9676619 0.0444692 -0.00363363 0.05919234]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6mQHvISwrz2K9dI958ajvVsQwzzGlFw+9OqIPfuCe71snrA9wIULvbVbtj2I+Cg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00826381 0.0857859 0.10300739]\n [-0.07996922 0.02381151 0.21541128]\n [ 0.06685439 -0.06140421 0.08623967]\n [-0.0340631 0.0890421 0.16501057]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+wJ64c6tKsCUhpRSlIwBbJRLMowBdJRHQLxaZFI/Z/V1fZQoaAZoCWgPQwi7mGa616klwJSGlFKUaBVLMmgWR0C8WkZy6tkndX2UKGgGaAloD0MIHuIftvTYH8CUhpRSlGgVSzJoFkdAvFoXiZOSGXV9lChoBmgJaA9DCIwwRbk0jhbAlIaUUpRoFUsyaBZHQLxZ6bpeNT91fZQoaAZoCWgPQwh+/RAbLGwlwJSGlFKUaBVLMmgWR0C8WtvznRsudX2UKGgGaAloD0MIXHFxVG46LsCUhpRSlGgVSzJoFkdAvFq9wvQF93V9lChoBmgJaA9DCIOnkCv17CXAlIaUUpRoFUsyaBZHQLxajsZpBX11fZQoaAZoCWgPQwgmjdE6qlodwJSGlFKUaBVLMmgWR0C8WmC6xxDLdX2UKGgGaAloD0MIc6Hyr+UJNMCUhpRSlGgVSzJoFkdAvFtd7CzkZXV9lChoBmgJaA9DCM6LE1/teB/AlIaUUpRoFUsyaBZHQLxbP7zkIX11fZQoaAZoCWgPQwhCl3DoLeYgwJSGlFKUaBVLMmgWR0C8WxCoKlYVdX2UKGgGaAloD0MIwhN6/UkgM8CUhpRSlGgVSzJoFkdAvFrihRIjGHV9lChoBmgJaA9DCJP8iF+xbiDAlIaUUpRoFUsyaBZHQLxb0CFsYVJ1fZQoaAZoCWgPQwjvAiUFFrgowJSGlFKUaBVLMmgWR0C8W7H+ERJ3dX2UKGgGaAloD0MIHeT1YFKsE8CUhpRSlGgVSzJoFkdAvFuC7btZ3nV9lChoBmgJaA9DCFzMzw1NkSbAlIaUUpRoFUsyaBZHQLxbVKqn3td1fZQoaAZoCWgPQwiQSUbOwo4lwJSGlFKUaBVLMmgWR0C8XE5qIrOJdX2UKGgGaAloD0MIRtEDH4NFIsCUhpRSlGgVSzJoFkdAvFwwo9cKPXV9lChoBmgJaA9DCENTdvpBsTHAlIaUUpRoFUsyaBZHQLxcAbW3BpJ1fZQoaAZoCWgPQwj7XdiarZwawJSGlFKUaBVLMmgWR0C8W9N/z8P4dX2UKGgGaAloD0MIKEnXTL6hIMCUhpRSlGgVSzJoFkdAvFzCaLGaQXV9lChoBmgJaA9DCH79EBssxCPAlIaUUpRoFUsyaBZHQLxcpGTcIqt1fZQoaAZoCWgPQwjScMrcfLMhwJSGlFKUaBVLMmgWR0C8XHVRtP56dX2UKGgGaAloD0MII/jfSnZ8KsCUhpRSlGgVSzJoFkdAvFxHSx7iQ3V9lChoBmgJaA9DCGPQCaGDzirAlIaUUpRoFUsyaBZHQLxdPN0vGqB1fZQoaAZoCWgPQwj1vvG1Z+4ywJSGlFKUaBVLMmgWR0C8XR83Mpw0dX2UKGgGaAloD0MIVfgzvFkLIsCUhpRSlGgVSzJoFkdAvFzwbp/wzHV9lChoBmgJaA9DCCiCOA8nQB/AlIaUUpRoFUsyaBZHQLxcwmSyMUB1fZQoaAZoCWgPQwh8RiI0gjkxwJSGlFKUaBVLMmgWR0C8XceTeO4odX2UKGgGaAloD0MIvRx23zEENsCUhpRSlGgVSzJoFkdAvF2pz7uUlnV9lChoBmgJaA9DCJfGL7ySxCDAlIaUUpRoFUsyaBZHQLxdesLORkp1fZQoaAZoCWgPQwiXHeIftpwwwJSGlFKUaBVLMmgWR0C8XUzRtxdZdX2UKGgGaAloD0MID0JAvoRSI8CUhpRSlGgVSzJoFkdAvF411RtP6HV9lChoBmgJaA9DCLVSCOQS3yHAlIaUUpRoFUsyaBZHQLxeGBwdbPh1fZQoaAZoCWgPQwisN2qF6fMpwJSGlFKUaBVLMmgWR0C8XekZR8+idX2UKGgGaAloD0MIZyrEI/EaJMCUhpRSlGgVSzJoFkdAvF265PM0QHV9lChoBmgJaA9DCMMoCB7fJjPAlIaUUpRoFUsyaBZHQLxeufQ8fV91fZQoaAZoCWgPQwh48umxLe81wJSGlFKUaBVLMmgWR0C8Xpv/WDpUdX2UKGgGaAloD0MIs9DOaRZgMsCUhpRSlGgVSzJoFkdAvF5s8V58jXV9lChoBmgJaA9DCJRnXg67hybAlIaUUpRoFUsyaBZHQLxePrJr+Hd1fZQoaAZoCWgPQwhLcyuE1QQywJSGlFKUaBVLMmgWR0C8XzM1fmcOdX2UKGgGaAloD0MIthSQ9j8wJ8CUhpRSlGgVSzJoFkdAvF8VDZ13dXV9lChoBmgJaA9DCDW1bK0vGiLAlIaUUpRoFUsyaBZHQLxe5gAIY3x1fZQoaAZoCWgPQwi8H7dfPqElwJSGlFKUaBVLMmgWR0C8Xrfp2U0OdX2UKGgGaAloD0MIdnCwNzHIMMCUhpRSlGgVSzJoFkdAvF+mzY287XV9lChoBmgJaA9DCMcvvJLkuRvAlIaUUpRoFUsyaBZHQLxfiKrq+rV1fZQoaAZoCWgPQwia6sn8oz8cwJSGlFKUaBVLMmgWR0C8X1mrfcesdX2UKGgGaAloD0MINIKN699tIcCUhpRSlGgVSzJoFkdAvF8rgbZOBXV9lChoBmgJaA9DCOARFaqb+x3AlIaUUpRoFUsyaBZHQLxgH5Lh73R1fZQoaAZoCWgPQwgpCYm0jX8mwJSGlFKUaBVLMmgWR0C8YAFqzqrzdX2UKGgGaAloD0MIpaKx9nc+J8CUhpRSlGgVSzJoFkdAvF/SXnhbW3V9lChoBmgJaA9DCEBqEyf3mx3AlIaUUpRoFUsyaBZHQLxfpJbt7a91fZQoaAZoCWgPQwjj/iPToQcxwJSGlFKUaBVLMmgWR0C8YJrxmTTwdX2UKGgGaAloD0MImMCtu3kaLMCUhpRSlGgVSzJoFkdAvGB82FWXC3V9lChoBmgJaA9DCLgHISBfMinAlIaUUpRoFUsyaBZHQLxgTcjqv/11fZQoaAZoCWgPQwj3ItqOqQsrwJSGlFKUaBVLMmgWR0C8YB+VTrE+dX2UKGgGaAloD0MIkbQbfcw7MsCUhpRSlGgVSzJoFkdAvGES3XqZ+nV9lChoBmgJaA9DCHe+nxovXQ3AlIaUUpRoFUsyaBZHQLxg9K2rn1Z1fZQoaAZoCWgPQwg5miMrvxwawJSGlFKUaBVLMmgWR0C8YMWPDHfedX2UKGgGaAloD0MIUtfa+1TVG8CUhpRSlGgVSzJoFkdAvGCXVDrquHV9lChoBmgJaA9DCAABa9WukSPAlIaUUpRoFUsyaBZHQLxhgpKzzEt1fZQoaAZoCWgPQwi5iVqaW2kiwJSGlFKUaBVLMmgWR0C8YWRoEjgRdX2UKGgGaAloD0MI7L/OTZthHsCUhpRSlGgVSzJoFkdAvGE1T850bXV9lChoBmgJaA9DCLMkQE0tgyXAlIaUUpRoFUsyaBZHQLxhBx1gYxd1fZQoaAZoCWgPQwg4SfPHtLYpwJSGlFKUaBVLMmgWR0C8YfORxLkCdX2UKGgGaAloD0MIrBxaZDtvJsCUhpRSlGgVSzJoFkdAvGHVa3ZwoHV9lChoBmgJaA9DCMBbIEHxwyHAlIaUUpRoFUsyaBZHQLxhplchTwV1fZQoaAZoCWgPQwjbatYZ33ccwJSGlFKUaBVLMmgWR0C8YXhYJVsDdX2UKGgGaAloD0MI+nyUERd8NsCUhpRSlGgVSzJoFkdAvGJsixFAmnV9lChoBmgJaA9DCJJYUu4+dyjAlIaUUpRoFUsyaBZHQLxiTnhbW3B1fZQoaAZoCWgPQwjNkZVfBlMswJSGlFKUaBVLMmgWR0C8Yh9sJpnIdX2UKGgGaAloD0MIYcPTK2VZJcCUhpRSlGgVSzJoFkdAvGHxNXYDknV9lChoBmgJaA9DCHTTZpyGOCjAlIaUUpRoFUsyaBZHQLxi5Cpm29d1fZQoaAZoCWgPQwhLkXwlkGouwJSGlFKUaBVLMmgWR0C8YsYYFaB7dX2UKGgGaAloD0MIbO7of7l2KcCUhpRSlGgVSzJoFkdAvGKXOu7pV3V9lChoBmgJaA9DCGTqruyCYSrAlIaUUpRoFUsyaBZHQLxiaQP7N0N1fZQoaAZoCWgPQwiOWItPAWAgwJSGlFKUaBVLMmgWR0C8Y148+zMSdX2UKGgGaAloD0MI3pGx2vxnK8CUhpRSlGgVSzJoFkdAvGNAKmbb13V9lChoBmgJaA9DCGB0eXO4xh7AlIaUUpRoFUsyaBZHQLxjEULDye91fZQoaAZoCWgPQwh7Tnrf+L42wJSGlFKUaBVLMmgWR0C8YuNYW+GodX2UKGgGaAloD0MIVMTpJFu9IsCUhpRSlGgVSzJoFkdAvGPcwfyPMnV9lChoBmgJaA9DCCR7hJohSTXAlIaUUpRoFUsyaBZHQLxjvvAXVLB1fZQoaAZoCWgPQwg3+wPltk0iwJSGlFKUaBVLMmgWR0C8Y4/bCaZydX2UKGgGaAloD0MI5KHvbmVJNcCUhpRSlGgVSzJoFkdAvGNh3JPqLXV9lChoBmgJaA9DCGyWy0bnfBrAlIaUUpRoFUsyaBZHQLxkUcYIjW11fZQoaAZoCWgPQwg1zxH5LvUkwJSGlFKUaBVLMmgWR0C8ZDOcH4XXdX2UKGgGaAloD0MIT+W0p+QcF8CUhpRSlGgVSzJoFkdAvGQEjRlYl3V9lChoBmgJaA9DCO4HPDCA8BvAlIaUUpRoFUsyaBZHQLxj1lyBCld1fZQoaAZoCWgPQwgOEw1S8DQgwJSGlFKUaBVLMmgWR0C8ZNCXD3uedX2UKGgGaAloD0MI3CkdrP9jNMCUhpRSlGgVSzJoFkdAvGSywdKdx3V9lChoBmgJaA9DCOay0Tk/VSvAlIaUUpRoFUsyaBZHQLxkg7Omixp1fZQoaAZoCWgPQwjZeRubHakzwJSGlFKUaBVLMmgWR0C8ZFWKEWZadX2UKGgGaAloD0MI5E7pYP3vHMCUhpRSlGgVSzJoFkdAvGVce5nUUnV9lChoBmgJaA9DCMOgTKPJ9SDAlIaUUpRoFUsyaBZHQLxlPlGPPs11fZQoaAZoCWgPQwi4sdmR6gsswJSGlFKUaBVLMmgWR0C8ZQ+ZCv5hdX2UKGgGaAloD0MIonprYKvwM8CUhpRSlGgVSzJoFkdAvGThnxri2nV9lChoBmgJaA9DCPaVB+kpijfAlIaUUpRoFUsyaBZHQLxl2KEnLJV1fZQoaAZoCWgPQwiZucDlscYjwJSGlFKUaBVLMmgWR0C8Zbp57gKndX2UKGgGaAloD0MI+P9xwoTRIsCUhpRSlGgVSzJoFkdAvGWLafzz3HV9lChoBmgJaA9DCI/Ey9O59jLAlIaUUpRoFUsyaBZHQLxlXYmsvIx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -10.800488355197013, "std_reward": 4.973561722235207, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T20:01:07.992821"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0da2c1e64a6e33b3148b91c2d03edadeb2d1456181eabc3025ab52a5a79e1b7
|
3 |
size 3212
|