File size: 4,182 Bytes
e3fce3f 744f108 e3fce3f 1126007 e3fce3f 0a9688c 292d4d9 e3fce3f 292d4d9 744f108 292d4d9 ccdca11 e3fce3f 744f108 292d4d9 7136214 ccdca11 e3fce3f 41ab08d 1697d3a 41ab08d 1697d3a e3fce3f 744f108 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
language:
- hi
base_model: nurzhanit/whisper-enhanced-ml
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Hi - Sanchit Gandhi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: default
split: None
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Hi - Sanchit Gandhi
This model is a fine-tuned version of [nurzhanit/whisper-enhanced-ml](https://huggingface.co/nurzhanit/whisper-enhanced-ml) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Wer: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:--------:|:----:|:---------------:|:---:|
| 0.0 | 16.6667 | 100 | 0.0000 | 0.0 |
| 0.0 | 33.3333 | 200 | 0.0000 | 0.0 |
| 0.0 | 50.0 | 300 | 0.0000 | 0.0 |
| 0.0 | 66.6667 | 400 | 0.0000 | 0.0 |
| 0.0 | 83.3333 | 500 | 0.0000 | 0.0 |
| 0.0 | 100.0 | 600 | 0.0000 | 0.0 |
| 0.0 | 116.6667 | 700 | 0.0000 | 0.0 |
| 0.0 | 133.3333 | 800 | 0.0000 | 0.0 |
| 0.0 | 150.0 | 900 | 0.0000 | 0.0 |
| 0.0 | 166.6667 | 1000 | 0.0000 | 0.0 |
| 0.0 | 183.3333 | 1100 | 0.0000 | 0.0 |
| 0.0 | 200.0 | 1200 | 0.0000 | 0.0 |
| 0.0 | 216.6667 | 1300 | 0.0000 | 0.0 |
| 0.0 | 233.3333 | 1400 | 0.0000 | 0.0 |
| 0.0 | 250.0 | 1500 | 0.0000 | 0.0 |
| 0.0 | 266.6667 | 1600 | 0.0000 | 0.0 |
| 0.0 | 283.3333 | 1700 | 0.0000 | 0.0 |
| 0.0 | 300.0 | 1800 | 0.0000 | 0.0 |
| 0.0 | 316.6667 | 1900 | 0.0000 | 0.0 |
| 0.0 | 333.3333 | 2000 | 0.0000 | 0.0 |
| 0.0 | 350.0 | 2100 | 0.0000 | 0.0 |
| 0.0 | 366.6667 | 2200 | 0.0000 | 0.0 |
| 0.0 | 383.3333 | 2300 | 0.0000 | 0.0 |
| 0.0 | 400.0 | 2400 | 0.0000 | 0.0 |
| 0.0 | 416.6667 | 2500 | 0.0000 | 0.0 |
| 0.0 | 433.3333 | 2600 | 0.0000 | 0.0 |
| 0.0 | 450.0 | 2700 | 0.0000 | 0.0 |
| 0.0 | 466.6667 | 2800 | 0.0000 | 0.0 |
| 0.0 | 483.3333 | 2900 | 0.0000 | 0.0 |
| 0.0 | 500.0 | 3000 | 0.0000 | 0.0 |
| 0.0 | 516.6667 | 3100 | 0.0000 | 0.0 |
| 0.0 | 533.3333 | 3200 | 0.0000 | 0.0 |
| 0.0 | 550.0 | 3300 | 0.0000 | 0.0 |
| 0.0 | 566.6667 | 3400 | 0.0000 | 0.0 |
| 0.0 | 583.3333 | 3500 | 0.0000 | 0.0 |
| 0.0 | 600.0 | 3600 | 0.0000 | 0.0 |
| 0.0 | 616.6667 | 3700 | 0.0000 | 0.0 |
| 0.0 | 633.3333 | 3800 | 0.0000 | 0.0 |
| 0.0 | 650.0 | 3900 | 0.0000 | 0.0 |
| 0.0 | 666.6667 | 4000 | 0.0000 | 0.0 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1
|