--- language: - hi base_model: nurzhanit/whisper-enhanced-ml tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: default split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 0.0 --- # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [nurzhanit/whisper-enhanced-ml](https://huggingface.co/nurzhanit/whisper-enhanced-ml) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Wer: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:---:| | 0.0 | 16.6667 | 100 | 0.0000 | 0.0 | | 0.0 | 33.3333 | 200 | 0.0000 | 0.0 | | 0.0 | 50.0 | 300 | 0.0000 | 0.0 | | 0.0 | 66.6667 | 400 | 0.0000 | 0.0 | | 0.0 | 83.3333 | 500 | 0.0000 | 0.0 | | 0.0 | 100.0 | 600 | 0.0000 | 0.0 | | 0.0 | 116.6667 | 700 | 0.0000 | 0.0 | | 0.0 | 133.3333 | 800 | 0.0000 | 0.0 | | 0.0 | 150.0 | 900 | 0.0000 | 0.0 | | 0.0 | 166.6667 | 1000 | 0.0000 | 0.0 | | 0.0 | 183.3333 | 1100 | 0.0000 | 0.0 | | 0.0 | 200.0 | 1200 | 0.0000 | 0.0 | | 0.0 | 216.6667 | 1300 | 0.0000 | 0.0 | | 0.0 | 233.3333 | 1400 | 0.0000 | 0.0 | | 0.0 | 250.0 | 1500 | 0.0000 | 0.0 | | 0.0 | 266.6667 | 1600 | 0.0000 | 0.0 | | 0.0 | 283.3333 | 1700 | 0.0000 | 0.0 | | 0.0 | 300.0 | 1800 | 0.0000 | 0.0 | | 0.0 | 316.6667 | 1900 | 0.0000 | 0.0 | | 0.0 | 333.3333 | 2000 | 0.0000 | 0.0 | | 0.0 | 350.0 | 2100 | 0.0000 | 0.0 | | 0.0 | 366.6667 | 2200 | 0.0000 | 0.0 | | 0.0 | 383.3333 | 2300 | 0.0000 | 0.0 | | 0.0 | 400.0 | 2400 | 0.0000 | 0.0 | | 0.0 | 416.6667 | 2500 | 0.0000 | 0.0 | | 0.0 | 433.3333 | 2600 | 0.0000 | 0.0 | | 0.0 | 450.0 | 2700 | 0.0000 | 0.0 | | 0.0 | 466.6667 | 2800 | 0.0000 | 0.0 | | 0.0 | 483.3333 | 2900 | 0.0000 | 0.0 | | 0.0 | 500.0 | 3000 | 0.0000 | 0.0 | | 0.0 | 516.6667 | 3100 | 0.0000 | 0.0 | | 0.0 | 533.3333 | 3200 | 0.0000 | 0.0 | | 0.0 | 550.0 | 3300 | 0.0000 | 0.0 | | 0.0 | 566.6667 | 3400 | 0.0000 | 0.0 | | 0.0 | 583.3333 | 3500 | 0.0000 | 0.0 | | 0.0 | 600.0 | 3600 | 0.0000 | 0.0 | | 0.0 | 616.6667 | 3700 | 0.0000 | 0.0 | | 0.0 | 633.3333 | 3800 | 0.0000 | 0.0 | | 0.0 | 650.0 | 3900 | 0.0000 | 0.0 | | 0.0 | 666.6667 | 4000 | 0.0000 | 0.0 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.2 - Tokenizers 0.19.1