Update README.md
Browse files
README.md
CHANGED
@@ -34,8 +34,8 @@ You can train the model using [NeMo Aligner](https://github.com/NVIDIA/NeMo-Alig
|
|
34 |
|
35 |
## References
|
36 |
|
|
|
37 |
* [DPO method](https://arxiv.org/abs/2305.18290)
|
38 |
-
* [HelpSteer](https://arxiv.org/abs/2311.09528)
|
39 |
* [Llama 3: Open Foundation and Instruct Models](https://ai.meta.com/blog/meta-llama-3/) <br>
|
40 |
* [Meta's Llama 3 Webpage](https://llama.meta.com/llama3/) <br>
|
41 |
* [Meta's Llama 3 Model Card](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) <br>
|
@@ -208,13 +208,13 @@ E-Mail: [Zhilin Wang](mailto:[email protected])
|
|
208 |
If you find this model useful, please cite the following works
|
209 |
|
210 |
```bibtex
|
211 |
-
@misc{
|
212 |
-
title={
|
213 |
-
author={Zhilin Wang and Yi Dong and
|
214 |
-
year={
|
215 |
-
eprint={
|
216 |
archivePrefix={arXiv},
|
217 |
-
primaryClass={cs.CL}
|
218 |
}
|
219 |
```
|
220 |
|
|
|
34 |
|
35 |
## References
|
36 |
|
37 |
+
* [HelpSteer2](https://arxiv.org/abs/2406.08673)
|
38 |
* [DPO method](https://arxiv.org/abs/2305.18290)
|
|
|
39 |
* [Llama 3: Open Foundation and Instruct Models](https://ai.meta.com/blog/meta-llama-3/) <br>
|
40 |
* [Meta's Llama 3 Webpage](https://llama.meta.com/llama3/) <br>
|
41 |
* [Meta's Llama 3 Model Card](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) <br>
|
|
|
208 |
If you find this model useful, please cite the following works
|
209 |
|
210 |
```bibtex
|
211 |
+
@misc{wang2024helpsteer2,
|
212 |
+
title={HelpSteer2: Open-source dataset for training top-performing reward models},
|
213 |
+
author={Zhilin Wang and Yi Dong and Olivier Delalleau and Jiaqi Zeng and Gerald Shen and Daniel Egert and Jimmy J. Zhang and Makesh Narsimhan Sreedhar and Oleksii Kuchaiev},
|
214 |
+
year={2024},
|
215 |
+
eprint={2406.08673},
|
216 |
archivePrefix={arXiv},
|
217 |
+
primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
|
218 |
}
|
219 |
```
|
220 |
|