zihanliu commited on
Commit
6de370a
·
verified ·
1 Parent(s): 10ca0d7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -5
README.md CHANGED
@@ -19,7 +19,7 @@ We release ChatQA1.5, which excels at RAG-based conversational question answerin
19
  Results in ConvRAG are as follows:
20
 
21
  | | ChatQA-1.0-7B | Command-R-Plus | Llama-3-instruct-70b | GPT-4-0613 | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
22
- | -- | -- | -- | -- | -- | -- | -- | -- |
23
  | Doc2Dial | 37.88 | 33.51 | 37.88 | 34.16 | 38.9 | 39.33 | 41.26 |
24
  | QuAC | 29.69 | 34.16 | 36.96 | 40.29 | 41.82 | 39.73 | 38.82 |
25
  | QReCC | 46.97 | 49.77 | 51.34 | 52.01 | 48.05 | 49.03 | 51.40 |
@@ -33,7 +33,24 @@ Results in ConvRAG are as follows:
33
  | Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.14 | 55.17 | 58.25 |
34
  | Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 53.89 | 53.99 | 57.14 |
35
 
36
- Note that ChatQA-1.5 used some samples from the HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  ## How to use
39
  ```python
@@ -57,6 +74,7 @@ def get_formatted_input(messages, context):
57
 
58
  for item in enumerate(messages):
59
  if item['role'] == "user":
 
60
  item['content'] = instruction + " " + item['content']
61
  break
62
 
@@ -88,15 +106,17 @@ response = outputs[0][input_ids.shape[-1]:]
88
  print(tokenizer.decode(response, skip_special_tokens=True))
89
  ```
90
 
91
- ## Contact
92
  Zihan Liu ([email protected]), Wei Ping ([email protected])
93
 
94
  ## Citation
95
- <pre>@article{liu2024chatqa,
 
96
  title={ChatQA: Building GPT-4 Level Conversational QA Models},
97
  author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
98
  journal={arXiv preprint arXiv:2401.10225},
99
- year={2024}}</pre>
 
100
 
101
 
102
  ## License
 
19
  Results in ConvRAG are as follows:
20
 
21
  | | ChatQA-1.0-7B | Command-R-Plus | Llama-3-instruct-70b | GPT-4-0613 | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
22
+ | -- |:--:|:--:|:--:|:--:|:--:|:--:|:--:|
23
  | Doc2Dial | 37.88 | 33.51 | 37.88 | 34.16 | 38.9 | 39.33 | 41.26 |
24
  | QuAC | 29.69 | 34.16 | 36.96 | 40.29 | 41.82 | 39.73 | 38.82 |
25
  | QReCC | 46.97 | 49.77 | 51.34 | 52.01 | 48.05 | 49.03 | 51.40 |
 
33
  | Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.14 | 55.17 | 58.25 |
34
  | Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 53.89 | 53.99 | 57.14 |
35
 
36
+ Note that ChatQA-1.5 used some samples from the HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial. The data and evaluation scripts for ConvRAG can be found here.
37
+
38
+
39
+ ## Prompt Format
40
+ <pre>
41
+ System: {System}
42
+
43
+ {Context}
44
+
45
+ User: {Question}
46
+
47
+ Assistant: {Response}
48
+
49
+ User: {Question}
50
+
51
+ Assistant:
52
+ </pre>
53
+
54
 
55
  ## How to use
56
  ```python
 
74
 
75
  for item in enumerate(messages):
76
  if item['role'] == "user":
77
+ ## only apply this instruction for the first user turn
78
  item['content'] = instruction + " " + item['content']
79
  break
80
 
 
106
  print(tokenizer.decode(response, skip_special_tokens=True))
107
  ```
108
 
109
+ ## Correspondence to
110
  Zihan Liu ([email protected]), Wei Ping ([email protected])
111
 
112
  ## Citation
113
+ <pre>
114
+ @article{liu2024chatqa,
115
  title={ChatQA: Building GPT-4 Level Conversational QA Models},
116
  author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
117
  journal={arXiv preprint arXiv:2401.10225},
118
+ year={2024}}
119
+ </pre>
120
 
121
 
122
  ## License