ahatamiz commited on
Commit
60ce7c6
·
verified ·
1 Parent(s): ecc951d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -1
README.md CHANGED
@@ -34,13 +34,69 @@ You must first login into HuggingFace to pull the model:
34
  huggingface-cli login
35
  ```
36
 
37
- The model can be simply used according to:
 
 
 
 
 
 
 
 
 
38
 
39
  ```Python
40
  from transformers import AutoModelForImageClassification
41
  model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-T-1K", trust_remote_code=True)
42
  ```
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  ### License:
46
 
 
34
  huggingface-cli login
35
  ```
36
 
37
+ It is highly recommended to install the requirements for MambaVision by running the following:
38
+
39
+
40
+ ```Bash
41
+ pip install mambavision
42
+ ```
43
+
44
+ For each model, we offer two variants for image classification and feature extraction that can be imported with 1 line of code.
45
+
46
+ The model can be simply imported according to:
47
 
48
  ```Python
49
  from transformers import AutoModelForImageClassification
50
  model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-T-1K", trust_remote_code=True)
51
  ```
52
 
53
+ The model outputs logits when an image is passed. If label is additionally provided, cross entropy loss between the output prediction and label is computed.
54
+
55
+ The following demonstrates a minimal example of how to use the model:
56
+
57
+
58
+ ```Python
59
+ from transformers import AutoModelForImageClassification
60
+ from PIL import Image
61
+ import requests
62
+ import torch
63
+
64
+ # import mambavision model
65
+
66
+ model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-T-1K", trust_remote_code=True)
67
+
68
+ # eval mode for inference
69
+ model.eval()
70
+
71
+ # prepare image for the model
72
+ url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
73
+ image = Image.open(requests.get(url, stream=True).raw)
74
+
75
+ # define a transform
76
+
77
+ transforms = timm.data.create_transform((3, 224, 224))
78
+
79
+ image = transforms(image).unsqueeze(0)
80
+
81
+ # put both model and image on cuda
82
+
83
+ model = model.cuda()
84
+ image = image.cuda()
85
+
86
+ # forward pass
87
+ outputs = model(image)
88
+
89
+ # You can then extract the predicted probabilities by applying softmax:
90
+
91
+ probabilities = torch.nn.functional.softmax(outputs['logits'], dim=0)
92
+
93
+ # In order to find the top 5 predicted class indexes and their corresponding values:
94
+
95
+ values, indices = torch.topk(probabilities, 5)
96
+
97
+
98
+ ```
99
+
100
 
101
  ### License:
102