Safetensors
custom_code
File size: 5,504 Bytes
b240ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright (c) 2023-2024, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

from typing import Callable, List, Optional, Set, Tuple, Union, Any, Iterable
from types import MethodType

import torch
from torch import nn

from .feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer


def _take_indices(
        num_blocks: int,
        n: Optional[Union[int, List[int], Tuple[int]]],
) -> Tuple[Set[int], int]:
    if isinstance(n, int):
        assert n >= 0
        take_indices = {x for x in range(num_blocks - n, num_blocks)}
    else:
        take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
    return take_indices, max(take_indices)


def forward_intermediates(
        model: nn.Module,
        patch_extractor: Callable[[torch.Tensor], torch.Tensor],
        norm: nn.Module,
        num_summary_tokens: int,
        num_cls_tokens: int,
        x: torch.Tensor,
        indices: Optional[Union[int, List[int], Tuple[int]]] = None,
        return_prefix_tokens: bool = False,
        stop_early: bool = False,
        output_fmt: str = 'NCHW',
        intermediates_only: bool = False,
        aggregation: Optional[str] = "sparse",
        inter_feature_normalizer: Optional[IntermediateFeatureNormalizerBase] = None,
        norm_alpha_scheme = "post-alpha",
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
    """ Forward features that returns intermediates.

    The Dense layer aggregation method is inspired from the paper: "Dense Connector for MLLMs"
    by Yao, Huanjin et al. (2024). arXiv preprint arXiv:2405.13800}

    Args:
        x: Input image tensor
        indices: Take last n blocks if int, select matching indices if sequence
        return_prefix_tokens: Return both prefix and spatial intermediate tokens
        norm: Apply norm layer to all intermediates
        stop_early: Stop iterating over blocks when last desired intermediate hit
        output_fmt: Shape of intermediate feature outputs
        intermediates_only: Only return intermediate features
        aggregation: intermediate layer aggregation method (sparse or dense)
        norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha")
    Returns:
    """
    assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.'
    assert aggregation in ('sparse', 'dense'), 'Aggregation must be one of sparse or dense.'
    reshape = output_fmt == 'NCHW'
    intermediates = []

    blocks = model.blocks

    take_indices, max_index = _take_indices(len(blocks), indices)
    take_indices = sorted(take_indices)
    # forward pass
    B, _, height, width = x.shape

    x = patch_extractor(x)

    if stop_early:
        blocks = blocks[:max_index + 1]

    if inter_feature_normalizer is None or norm_alpha_scheme == 'none':
        inter_feature_normalizer = NullIntermediateFeatureNormalizer.get_instance(x.dtype, x.device)

    assert norm_alpha_scheme in ('none', 'pre-alpha', 'post-alpha'), f'Unsupported alpha scheme: {norm_alpha_scheme}'
    post_alpha_scheme = norm_alpha_scheme == 'post-alpha'

    accumulator = 0
    alpha_sum = 0
    num_accumulated = 0

    take_off = 0

    for i, blk in enumerate(blocks):
        x = blk(x)
        if aggregation == "dense":
            # Arbitrarily use the rotation matrix from the final layer in the dense group
            y, alpha = inter_feature_normalizer(x, i, rot_index=take_indices[take_off], skip=num_summary_tokens)
            if post_alpha_scheme:
                accumulator = accumulator + y
                alpha_sum = alpha_sum + alpha
            else:
                accumulator = accumulator + (alpha * y)
                alpha_sum += 1
            num_accumulated += 1
        if i == take_indices[take_off]:
            if aggregation == "dense":
                alpha = alpha_sum / num_accumulated
                x_ = alpha * accumulator / num_accumulated
                num_accumulated = 0
                accumulator = 0
                alpha_sum = 0
            else:
                 y, alpha = inter_feature_normalizer(x, i, skip=num_summary_tokens)
                 x_ = alpha * y
            # normalize intermediates with final norm layer if enabled
            intermediates.append(norm(x_))
            take_off = min(take_off + 1, len(take_indices) - 1)

    # process intermediates

    # split prefix (e.g. class, distill) and spatial feature tokens
    prefix_tokens = [y[:, :num_cls_tokens] for y in intermediates]
    intermediates = [y[:, num_summary_tokens:] for y in intermediates]

    if reshape:
        # reshape to BCHW output format
        H = height // model.patch_size
        W = width // model.patch_size
        intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
    if not torch.jit.is_scripting() and return_prefix_tokens:
        # return_prefix not support in torchscript due to poor type handling
        intermediates = list(zip(prefix_tokens, intermediates))
    if intermediates_only:
        return intermediates
    x = norm(x)
    return x, intermediates