Safetensors
custom_code
File size: 13,159 Bytes
b240ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright (c) 2023-2024, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from typing import Callable, Dict, Iterable, List, NamedTuple, Optional, Tuple, Union

import torch
from torch import nn

from timm.models import create_model, VisionTransformer

from .enable_cpe_support import enable_cpe
from .input_conditioner import InputConditioner
from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
from . import eradio_model
from .enable_spectral_reparam import configure_spectral_reparam_from_args
from .feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer


class Resolution(NamedTuple):
    height: int
    width: int


class RADIOModel(nn.Module):
    def __init__(
        self,
        model: nn.Module,
        input_conditioner: InputConditioner,
        patch_size: int,
        max_resolution: int,
        preferred_resolution: Resolution,
        summary_idxs: Optional[torch.Tensor] = None,
        window_size: int = None,
        adaptors: Dict[str, AdaptorBase] = None,
        feature_normalizer: Optional[FeatureNormalizer] = None,
        inter_feature_normalizer: Optional[IntermediateFeatureNormalizer] = None,
    ):
        super().__init__()

        self.model = model
        self.input_conditioner = input_conditioner
        if summary_idxs is not None:
            self.register_buffer('summary_idxs', summary_idxs)
        else:
            self.summary_idxs = None

        self._preferred_resolution = preferred_resolution
        self._patch_size = patch_size
        self._max_resolution = max_resolution
        self._window_size = window_size

        adaptors = adaptors or dict()
        self.adaptors = nn.ModuleDict(adaptors)

        if feature_normalizer is None:
            feature_normalizer = nn.Identity()
        self.feature_normalizer = feature_normalizer
        self.inter_feature_normalizer = inter_feature_normalizer

    @property
    def num_summary_tokens(self) -> int:
        if hasattr(self.model, 'num_summary_tokens'):
            return self.model.num_summary_tokens

        patch_gen = getattr(self.model, "patch_generator", None)
        if patch_gen is not None:
            return patch_gen.num_skip
        elif self.model.global_pool == 'avg':
            return 0
        return 1

    @property
    def num_cls_tokens(self) -> int:
        if hasattr(self.model, 'num_cls_tokens'):
            return self.model.num_cls_tokens

        patch_gen = getattr(self.model, 'patch_generator', None)
        if patch_gen is not None:
            return patch_gen.num_cls_tokens
        elif self.model.global_pool == 'avg':
            return 0
        return 1

    @property
    def patch_size(self) -> int:
        if self._patch_size is not None:
            return self._patch_size
        if hasattr(self.model, "patch_size"):
            return self.model.patch_size
        patch_gen = getattr(self.model, "patch_generator", None)
        if patch_gen is not None:
            return patch_gen.patch_size
        return None

    @property
    def max_resolution(self) -> int:
        return self._max_resolution

    @property
    def preferred_resolution(self) -> Resolution:
        return self._preferred_resolution

    @property
    def window_size(self) -> int:
        return self._window_size

    @property
    def min_resolution_step(self) -> int:
        res = self.patch_size
        if self.window_size is not None:
            res *= self.window_size
        return res

    @property
    def blocks(self) -> Iterable[nn.Module]:
        blocks = getattr(self.model, 'blocks', None)
        if blocks is not None:
            return blocks
        return None

    @property
    def embed_dim(self) -> int:
        return self.model.embed_dim

    def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
        ret = self.input_conditioner
        self.input_conditioner = nn.Identity()
        return ret

    def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
        height = int(round(height / self.min_resolution_step) * self.min_resolution_step)
        width = int(round(width / self.min_resolution_step) * self.min_resolution_step)

        height = max(height, self.min_resolution_step)
        width = max(width, self.min_resolution_step)

        return Resolution(height=height, width=width)

    def switch_to_deploy(self):
        fn = getattr(self.model, 'switch_to_deploy', None)
        if fn is not None:
            fn()

    def forward(self, x: torch.Tensor, feature_fmt: str = 'NLC') -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        '''
        Forward process for model.
        Args:
            x: Input tensor. Unless `make_preprocessor_external` has been called, then the dynamic range of `x` is expected to be `[0, 1]`,
                             otherwise `x` is expected to be mean centered with unit standard deviation.
            feature_format: ['NLC', 'NCHW'] - The output format for the features.
        '''
        res_step = self.min_resolution_step
        if res_step is not None and (x.shape[-2] % res_step != 0 or x.shape[-1] % res_step != 0):
            raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. '
                             '`self.get_nearest_supported_resolution(<height>, <width>) is provided as a convenience API. '
                             f'Input: {x.shape[-2:]}, Nearest: {self.get_nearest_supported_resolution(*x.shape[-2:])}')

        x = self.input_conditioner(x)
        y = self.model.forward_features(x)
        ret = self._extract_final(x, y, feature_fmt=feature_fmt)
        return ret

    def _extract_final(self, x: torch.Tensor, y: torch.Tensor, feature_fmt: str = 'NLC'):
        if isinstance(self.model, VisionTransformer):
            patch_gen = getattr(self.model, "patch_generator", None)
            if patch_gen is not None:
                all_summary = y[:, : patch_gen.num_cls_tokens]
                if self.summary_idxs is not None:
                    bb_summary = all_summary[:, self.summary_idxs]
                else:
                    bb_summary = all_summary
                all_feat = y[:, patch_gen.num_skip :]
            elif self.model.global_pool == "avg":
                all_summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
                bb_summary = all_summary
                all_feat = y
            else:
                all_summary = y[:, 0]
                bb_summary = all_summary
                all_feat = y[:, 1:]
        elif isinstance(self.model, eradio_model.ERADIO):
            _, f = y
            all_feat = f.flatten(2).transpose(1, 2)
            all_summary = all_feat.mean(dim=1)
            bb_summary = all_summary
        elif isinstance(y, (list, tuple)):
            all_summary, all_feat = y
            bb_summary = all_summary
        else:
            all_summary = y[:, :self.num_cls_tokens]
            if self.summary_idxs is not None and all_summary.shape[1] > 1:
                if all_summary.shape[1] == 1:
                    # Create dummy duplicates
                    all_summary = all_summary.expand(-1, 128, -1)
                bb_summary = all_summary[:, self.summary_idxs]
            else:
                bb_summary = all_summary
            all_feat = y[:, self.num_summary_tokens:]

        all_feat = self.feature_normalizer(all_feat)

        if feature_fmt == 'NCHW':
            fmt_feat = (all_feat.reshape(all_feat.shape[0], x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size, all_feat.shape[2])
                                .permute(0, 3, 1, 2)
            )
        elif feature_fmt == 'NLC':
            fmt_feat = all_feat
        else:
            raise ValueError(f'Unsupported feature_fmt: {feature_fmt}. Must be one of ["NLC", "NCHW"]')

        ret = RadioOutput(bb_summary.flatten(1), fmt_feat)

        if self.adaptors:
            ret = dict(backbone=ret)
            for name, adaptor in self.adaptors.items():
                if all_summary.ndim == 3:
                    summary = all_summary[:, adaptor.head_idx]
                else:
                    summary = all_summary
                ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat, feature_fmt=feature_fmt, patch_size=self.patch_size)
                v = adaptor(ada_input).to(torch.float32)
                ret[name] = v

        return ret

    def forward_intermediates(
            self,
            x: torch.Tensor,
            indices: Optional[Union[int, List[int], Tuple[int]]] = None,
            return_prefix_tokens: bool = False,
            norm: bool = False,
            stop_early: bool = False,
            output_fmt: str = 'NCHW',
            intermediates_only: bool = False,
            aggregation: Optional[str] = "sparse",
            norm_alpha_scheme: Optional[str] = "post-alpha",
    ) -> List[RadioOutput]:
        """ Forward features that returns intermediates.
        Args:
            x: Input image tensor
            indices: Take last n blocks if int, select matching indices if sequence
            return_prefix_tokens: Return both prefix and spatial intermediate tokens
            norm: Apply norm layer to all intermediates
            stop_early: Stop iterating over blocks when last desired intermediate hit
            output_fmt: Shape of intermediate feature outputs. Options: NCHW, NLC
            intermediates_only: Only return intermediate features
            aggregation: intermediate layer aggregation method (sparse or dense).
                Dense accumulation is done by averaging the features in each group.
            norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha"), or don't normalize ("none")
                Only affects dense aggregation
        Returns:
            List of RadioOutput objects.
        """
        x = self.input_conditioner(x)
        intermediates = self.model.forward_intermediates(
            x,
            indices=indices,
            return_prefix_tokens=return_prefix_tokens,
            norm=norm,
            stop_early=stop_early,
            output_fmt=output_fmt,
            intermediates_only=intermediates_only,
            aggregation=aggregation,
            inter_feature_normalizer=self.inter_feature_normalizer,
            norm_alpha_scheme=norm_alpha_scheme,
        )

        if not intermediates_only:
            final, intermediates = intermediates

        def prepare_summary(summ: Optional[torch.Tensor]):
            if summ is None:
                return summ
            if self.summary_idxs is not None and summ.shape[1] > 1:
                summ = summ[:, self.summary_idxs]
            return summ.flatten(1)

        if return_prefix_tokens:
            radio_outputs = [
                RadioOutput(prepare_summary(summary), features)
                for summary, features in intermediates
            ]
        else:
            radio_outputs = intermediates

        if intermediates_only:
            return radio_outputs
        else:
            final = self._extract_final(x, final, feature_fmt=output_fmt)
            return final, radio_outputs


def create_model_from_args(args) -> nn.Module:
    in_chans = 3
    if args.in_chans is not None:
        in_chans = args.in_chans
    elif args.input_size is not None:
        in_chans = args.input_size[0]

    # Skip weight initialization unless it's explicitly requested.
    weight_init = args.model_kwargs.pop("weight_init", "skip")

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        in_chans=in_chans,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint,
        weight_init=weight_init,
        **args.model_kwargs,
    )

    if hasattr(model, 'norm') and not getattr(args, 'model_norm', False):
        model.norm = nn.Identity()

    model.head = nn.Identity()

    assert (
        not args.cls_token_per_teacher or args.cpe_max_size is not None
    ), "CPE must be enabled for multiple CLS tokens!"

    if args.cpe_max_size is not None:
        uq_teachers = set(t['name'] for t in args.teachers)
        enable_cpe(
            model,
            args.cpe_max_size,
            num_cls_tokens=len(uq_teachers) if args.cls_token_per_teacher else 1,
            register_multiple=getattr(args, 'register_multiple', None),
            num_registers=getattr(args, 'cpe_num_registers', None),
        )

    return model