File size: 13,159 Bytes
b240ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from typing import Callable, Dict, Iterable, List, NamedTuple, Optional, Tuple, Union
import torch
from torch import nn
from timm.models import create_model, VisionTransformer
from .enable_cpe_support import enable_cpe
from .input_conditioner import InputConditioner
from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
from . import eradio_model
from .enable_spectral_reparam import configure_spectral_reparam_from_args
from .feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer
class Resolution(NamedTuple):
height: int
width: int
class RADIOModel(nn.Module):
def __init__(
self,
model: nn.Module,
input_conditioner: InputConditioner,
patch_size: int,
max_resolution: int,
preferred_resolution: Resolution,
summary_idxs: Optional[torch.Tensor] = None,
window_size: int = None,
adaptors: Dict[str, AdaptorBase] = None,
feature_normalizer: Optional[FeatureNormalizer] = None,
inter_feature_normalizer: Optional[IntermediateFeatureNormalizer] = None,
):
super().__init__()
self.model = model
self.input_conditioner = input_conditioner
if summary_idxs is not None:
self.register_buffer('summary_idxs', summary_idxs)
else:
self.summary_idxs = None
self._preferred_resolution = preferred_resolution
self._patch_size = patch_size
self._max_resolution = max_resolution
self._window_size = window_size
adaptors = adaptors or dict()
self.adaptors = nn.ModuleDict(adaptors)
if feature_normalizer is None:
feature_normalizer = nn.Identity()
self.feature_normalizer = feature_normalizer
self.inter_feature_normalizer = inter_feature_normalizer
@property
def num_summary_tokens(self) -> int:
if hasattr(self.model, 'num_summary_tokens'):
return self.model.num_summary_tokens
patch_gen = getattr(self.model, "patch_generator", None)
if patch_gen is not None:
return patch_gen.num_skip
elif self.model.global_pool == 'avg':
return 0
return 1
@property
def num_cls_tokens(self) -> int:
if hasattr(self.model, 'num_cls_tokens'):
return self.model.num_cls_tokens
patch_gen = getattr(self.model, 'patch_generator', None)
if patch_gen is not None:
return patch_gen.num_cls_tokens
elif self.model.global_pool == 'avg':
return 0
return 1
@property
def patch_size(self) -> int:
if self._patch_size is not None:
return self._patch_size
if hasattr(self.model, "patch_size"):
return self.model.patch_size
patch_gen = getattr(self.model, "patch_generator", None)
if patch_gen is not None:
return patch_gen.patch_size
return None
@property
def max_resolution(self) -> int:
return self._max_resolution
@property
def preferred_resolution(self) -> Resolution:
return self._preferred_resolution
@property
def window_size(self) -> int:
return self._window_size
@property
def min_resolution_step(self) -> int:
res = self.patch_size
if self.window_size is not None:
res *= self.window_size
return res
@property
def blocks(self) -> Iterable[nn.Module]:
blocks = getattr(self.model, 'blocks', None)
if blocks is not None:
return blocks
return None
@property
def embed_dim(self) -> int:
return self.model.embed_dim
def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
ret = self.input_conditioner
self.input_conditioner = nn.Identity()
return ret
def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
height = int(round(height / self.min_resolution_step) * self.min_resolution_step)
width = int(round(width / self.min_resolution_step) * self.min_resolution_step)
height = max(height, self.min_resolution_step)
width = max(width, self.min_resolution_step)
return Resolution(height=height, width=width)
def switch_to_deploy(self):
fn = getattr(self.model, 'switch_to_deploy', None)
if fn is not None:
fn()
def forward(self, x: torch.Tensor, feature_fmt: str = 'NLC') -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
'''
Forward process for model.
Args:
x: Input tensor. Unless `make_preprocessor_external` has been called, then the dynamic range of `x` is expected to be `[0, 1]`,
otherwise `x` is expected to be mean centered with unit standard deviation.
feature_format: ['NLC', 'NCHW'] - The output format for the features.
'''
res_step = self.min_resolution_step
if res_step is not None and (x.shape[-2] % res_step != 0 or x.shape[-1] % res_step != 0):
raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. '
'`self.get_nearest_supported_resolution(<height>, <width>) is provided as a convenience API. '
f'Input: {x.shape[-2:]}, Nearest: {self.get_nearest_supported_resolution(*x.shape[-2:])}')
x = self.input_conditioner(x)
y = self.model.forward_features(x)
ret = self._extract_final(x, y, feature_fmt=feature_fmt)
return ret
def _extract_final(self, x: torch.Tensor, y: torch.Tensor, feature_fmt: str = 'NLC'):
if isinstance(self.model, VisionTransformer):
patch_gen = getattr(self.model, "patch_generator", None)
if patch_gen is not None:
all_summary = y[:, : patch_gen.num_cls_tokens]
if self.summary_idxs is not None:
bb_summary = all_summary[:, self.summary_idxs]
else:
bb_summary = all_summary
all_feat = y[:, patch_gen.num_skip :]
elif self.model.global_pool == "avg":
all_summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
bb_summary = all_summary
all_feat = y
else:
all_summary = y[:, 0]
bb_summary = all_summary
all_feat = y[:, 1:]
elif isinstance(self.model, eradio_model.ERADIO):
_, f = y
all_feat = f.flatten(2).transpose(1, 2)
all_summary = all_feat.mean(dim=1)
bb_summary = all_summary
elif isinstance(y, (list, tuple)):
all_summary, all_feat = y
bb_summary = all_summary
else:
all_summary = y[:, :self.num_cls_tokens]
if self.summary_idxs is not None and all_summary.shape[1] > 1:
if all_summary.shape[1] == 1:
# Create dummy duplicates
all_summary = all_summary.expand(-1, 128, -1)
bb_summary = all_summary[:, self.summary_idxs]
else:
bb_summary = all_summary
all_feat = y[:, self.num_summary_tokens:]
all_feat = self.feature_normalizer(all_feat)
if feature_fmt == 'NCHW':
fmt_feat = (all_feat.reshape(all_feat.shape[0], x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size, all_feat.shape[2])
.permute(0, 3, 1, 2)
)
elif feature_fmt == 'NLC':
fmt_feat = all_feat
else:
raise ValueError(f'Unsupported feature_fmt: {feature_fmt}. Must be one of ["NLC", "NCHW"]')
ret = RadioOutput(bb_summary.flatten(1), fmt_feat)
if self.adaptors:
ret = dict(backbone=ret)
for name, adaptor in self.adaptors.items():
if all_summary.ndim == 3:
summary = all_summary[:, adaptor.head_idx]
else:
summary = all_summary
ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat, feature_fmt=feature_fmt, patch_size=self.patch_size)
v = adaptor(ada_input).to(torch.float32)
ret[name] = v
return ret
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
return_prefix_tokens: bool = False,
norm: bool = False,
stop_early: bool = False,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
aggregation: Optional[str] = "sparse",
norm_alpha_scheme: Optional[str] = "post-alpha",
) -> List[RadioOutput]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, select matching indices if sequence
return_prefix_tokens: Return both prefix and spatial intermediate tokens
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs. Options: NCHW, NLC
intermediates_only: Only return intermediate features
aggregation: intermediate layer aggregation method (sparse or dense).
Dense accumulation is done by averaging the features in each group.
norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha"), or don't normalize ("none")
Only affects dense aggregation
Returns:
List of RadioOutput objects.
"""
x = self.input_conditioner(x)
intermediates = self.model.forward_intermediates(
x,
indices=indices,
return_prefix_tokens=return_prefix_tokens,
norm=norm,
stop_early=stop_early,
output_fmt=output_fmt,
intermediates_only=intermediates_only,
aggregation=aggregation,
inter_feature_normalizer=self.inter_feature_normalizer,
norm_alpha_scheme=norm_alpha_scheme,
)
if not intermediates_only:
final, intermediates = intermediates
def prepare_summary(summ: Optional[torch.Tensor]):
if summ is None:
return summ
if self.summary_idxs is not None and summ.shape[1] > 1:
summ = summ[:, self.summary_idxs]
return summ.flatten(1)
if return_prefix_tokens:
radio_outputs = [
RadioOutput(prepare_summary(summary), features)
for summary, features in intermediates
]
else:
radio_outputs = intermediates
if intermediates_only:
return radio_outputs
else:
final = self._extract_final(x, final, feature_fmt=output_fmt)
return final, radio_outputs
def create_model_from_args(args) -> nn.Module:
in_chans = 3
if args.in_chans is not None:
in_chans = args.in_chans
elif args.input_size is not None:
in_chans = args.input_size[0]
# Skip weight initialization unless it's explicitly requested.
weight_init = args.model_kwargs.pop("weight_init", "skip")
model = create_model(
args.model,
pretrained=args.pretrained,
in_chans=in_chans,
num_classes=args.num_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=args.drop_block,
global_pool=args.gp,
bn_momentum=args.bn_momentum,
bn_eps=args.bn_eps,
scriptable=args.torchscript,
checkpoint_path=args.initial_checkpoint,
weight_init=weight_init,
**args.model_kwargs,
)
if hasattr(model, 'norm') and not getattr(args, 'model_norm', False):
model.norm = nn.Identity()
model.head = nn.Identity()
assert (
not args.cls_token_per_teacher or args.cpe_max_size is not None
), "CPE must be enabled for multiple CLS tokens!"
if args.cpe_max_size is not None:
uq_teachers = set(t['name'] for t in args.teachers)
enable_cpe(
model,
args.cpe_max_size,
num_cls_tokens=len(uq_teachers) if args.cls_token_per_teacher else 1,
register_multiple=getattr(args, 'register_multiple', None),
num_registers=getattr(args, 'cpe_num_registers', None),
)
return model
|