Safetensors
custom_code
File size: 11,983 Bytes
b240ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Copyright (c) 2023-2024, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import math
from typing import Union, Tuple, Optional

import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange

from .cls_token import ClsToken

input_dim_t = Union[int, Tuple[int, int]]

try:
    # raise ImportError()
    from indirect_grid_sample import indirect_grid_sample
except ImportError:
    indirect_grid_sample = None

class ViTPatchGenerator(nn.Module):
    def __init__(self,
                 patch_size: int,
                 embed_dim: int,
                 input_dims: input_dim_t,
                 abs_pos: bool = True,
                 normalize_patches: bool = False,
                 cls_token: bool = False,
                 max_input_dims: Optional[input_dim_t] = None,
                 pos_dropout: float = 0.0,
                 return_pos_enc: bool = False,
                 num_cls_tokens: int = 1,
                 register_multiple: Optional[int] = None,
                 num_registers: Optional[int] = None,
                 patch_bias: bool = False,
                 device=None, dtype=None,
    ):
        super().__init__()

        if isinstance(input_dims, int):
            input_dims = (input_dims, input_dims)

        if max_input_dims is None:
            max_input_dims = input_dims
        if isinstance(max_input_dims, int):
            max_input_dims = (max_input_dims, max_input_dims)

        max_input_dims = tuple(
            int(math.ceil(d / patch_size) * patch_size)
            for d in max_input_dims
        )

        self.cpe_mode = max_input_dims != input_dims
        self.pos_dropout = pos_dropout
        self.return_pos_enc = return_pos_enc

        factory = dict(device=device, dtype=dtype)

        self.patch_size = patch_size
        self.abs_pos = abs_pos
        self.embed_dim = embed_dim

        self.num_rows = max_input_dims[0] // patch_size
        self.num_cols = max_input_dims[1] // patch_size
        self.input_dims = tuple(d // patch_size for d in input_dims)
        self.num_patches = self.num_rows * self.num_cols
        self.max_input_dims = max_input_dims

        self.im_to_patches = Im2Patches(patch_size)
        self.embedder = ViTPatchLinear(patch_size, embed_dim, bias=patch_bias, **factory)

        if abs_pos:
            scale = embed_dim ** -0.5
            self.pos_embed = nn.Parameter(torch.randn(1, self.num_patches, embed_dim, **factory) * scale)

        self.cls_token = ClsToken(
            embed_dim,
            num_tokens=num_cls_tokens,
            enabled=cls_token,
            register_multiple=register_multiple,
            num_registers=num_registers,
        )

        self.patch_normalizer = nn.LayerNorm(embed_dim) if normalize_patches else nn.Identity()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        patches = self.embed_patches(x)
        patches, pos_enc = self.apply_pos_enc(patches, input_size=x.shape[2:])
        patches = self.cls_token(patches)
        patches = self.patch_normalizer(patches)
        if self.return_pos_enc:
            return patches, pos_enc
        return patches

    @property
    def apply_cls_token(self):
        return self.cls_token.enabled

    @property
    def num_cls_tokens(self):
        return self.cls_token.num_tokens

    @property
    def num_registers(self):
        return self.cls_token.num_registers

    @property
    def num_skip(self):
        return self.num_cls_tokens + self.num_registers

    def no_weight_decay(self):
        return [
            'pos_embed',
        ]

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        if self.abs_pos:
            self._load_embed(state_dict[f'{prefix}pos_embed'], self.pos_embed)

    def _load_embed(self, src_embed: torch.Tensor, targ_embed: nn.Parameter):
        if src_embed.shape != targ_embed.shape:
            src_size = int(math.sqrt(src_embed.shape[1]))

            assert src_size ** 2 == src_embed.shape[1], 'Unable to interpolate non-square embedding'

            src_embed = rearrange(src_embed, 'b (h w) c -> b c h w', h=src_size, w=src_size)
            src_embed = F.interpolate(src_embed, size=(self.num_rows, self.num_cols), mode='bicubic', align_corners=True, antialias=False)
            src_embed = rearrange(src_embed, 'b c h w -> b (h w) c')
        targ_embed.data.copy_(src_embed)

    def _load_projection(self, src_proj_weight: torch.Tensor, targ_proj_weight: torch.Tensor):
        if src_proj_weight.shape != targ_proj_weight.shape:
            src_patch_size = int(math.sqrt(src_proj_weight.shape[1] // 3))

            assert (src_patch_size ** 2) * 3 == src_proj_weight.shape[1], 'Unable to interpolate non-square patch size'

            src_proj_weight = rearrange(src_proj_weight, 'b (c h w) -> b c h w', c=3, h=src_patch_size, w=src_patch_size)
            src_proj_weight = F.interpolate(src_proj_weight, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=True, antialias=False)
            src_proj_weight = rearrange(src_proj_weight, 'b c h w -> b (c h w)')
        targ_proj_weight.data.copy_(src_proj_weight)

    def embed_patches(self, x: torch.Tensor) -> torch.Tensor:
        patches = self.im_to_patches(x)
        patches = self.embedder(patches)
        return patches

    def apply_pos_enc(self,
                      patches: torch.Tensor,
                      patch_idxs: Optional[torch.Tensor] = None,
                      input_size: Optional[Tuple[int, int]] = None,
    ) -> torch.Tensor:
        if not self.abs_pos:
            return patches

        pos_enc = self.get_pos_enc(patches.shape[0], patch_idxs, input_size)

        if self.training and self.pos_dropout > 0:
            keeps = torch.rand(patches.shape[0], 1, 1, dtype=pos_enc.dtype, device=pos_enc.device) > self.pos_dropout
            pos_enc_drop = torch.where(keeps, pos_enc, 0)
        else:
            pos_enc_drop = pos_enc

        return patches + pos_enc_drop, pos_enc

    def get_pos_enc(self,
                    batch_size: int,
                    patch_idxs: Optional[torch.Tensor] = None,
                    input_size: Optional[Tuple[int, int]] = None,
    ) -> torch.Tensor:
        if input_size is None:
            input_dims = self.input_dims
        else:
            input_dims = tuple(d // self.patch_size for d in input_size)

        pos_embed = self._get_pos_embeddings(batch_size, input_dims)

        if patch_idxs is None:
            return pos_embed

        exp_patch_idxs = patch_idxs.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1])

        pos_embed = torch.gather(pos_embed.expand(patch_idxs.shape[0], -1, -1), dim=1, index=exp_patch_idxs)
        return pos_embed


    def _get_pos_embeddings(self, batch_size: int, input_dims: Tuple[int, int]):
        if (self.num_rows, self.num_cols) == input_dims:
            return self.pos_embed

        pos_embed = self.pos_embed.reshape(1, self.num_rows, self.num_cols, -1).permute(0, 3, 1, 2)

        def window_select(pos_embed):
            if input_dims[0] < pos_embed.shape[-2]:
                pos_embed = pos_embed[..., :input_dims[0], :]
            if input_dims[1] < pos_embed.shape[-1]:
                pos_embed = pos_embed[..., :, :input_dims[1]]
            return pos_embed

        if self.cpe_mode:
            if self.training:
                min_scale = math.sqrt(0.1)
                scale = torch.rand(batch_size, 1, 1, device=pos_embed.device) * (1 - min_scale) + min_scale
                aspect_min = math.log(3 / 4)
                aspect_max = -aspect_min
                aspect = torch.exp(torch.rand(batch_size, 1, 1, device=pos_embed.device) * (aspect_max - aspect_min) + aspect_min)

                scale_x = scale * aspect
                scale_y = scale * (1 / aspect)
                scale_xy = torch.stack([scale_x, scale_y], dim=-1).clamp_(0, 1)

                pos_xy = torch.rand(batch_size, 1, 1, 2, device=pos_embed.device) * (1 - scale_xy)

                lin_x = torch.linspace(0, 1, steps=input_dims[1], device=pos_embed.device)[None, None].expand(batch_size, input_dims[0], -1)
                lin_y = torch.linspace(0, 1, steps=input_dims[0], device=pos_embed.device)[None, :, None].expand(batch_size, -1, input_dims[1])

                lin_xy = torch.stack([lin_x, lin_y], dim=-1)

                grid_xy = lin_xy * scale_xy + pos_xy

                # Convert to [-1, 1] range
                grid_xy.mul_(2).sub_(1)

                pos_embed = F.grid_sample(
                    pos_embed.float().expand(batch_size, -1, -1, -1),
                    grid=grid_xy,
                    mode='bilinear',
                    padding_mode='zeros',
                    align_corners=True,
                ).to(pos_embed.dtype)
            else:
                # i_rows, i_cols = input_dims
                # p_rows, p_cols = pos_embed.shape[2:]
                # if i_rows <= p_rows and i_cols <= p_cols:
                #     left = (p_cols - i_cols) // 2
                #     top = (p_rows - i_rows) // 2
                #     pos_embed = pos_embed[..., top:top+i_rows, left:left+i_cols]
                # else:
                max_dim = max(input_dims)
                pos_embed = F.interpolate(pos_embed.float(), size=(max_dim, max_dim), align_corners=True, mode='bilinear').to(pos_embed.dtype)

                pos_embed = window_select(pos_embed)
        else:
            pos_embed = window_select(pos_embed)

        if pos_embed.shape[-2:] != input_dims:
            pos_embed = F.interpolate(pos_embed.float(), size=input_dims, align_corners=True, mode='bilinear').to(pos_embed.dtype)

        pos_embed = pos_embed.flatten(2).permute(0, 2, 1)

        return pos_embed


class Im2Patches(nn.Module):
    def __init__(self, patch_size: int):
        super().__init__()
        self.patch_size = patch_size

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.patch_size == 1:
            patches = x.flatten(2)
            patches = patches.permute(0, 2, 1)
            return patches

        py = x.shape[-2] // self.patch_size
        px = x.shape[-1] // self.patch_size
        patches = rearrange(x, 'b c (py yy) (px xx) -> b (py px) (c yy xx)',
                            py=py, yy=self.patch_size,
                            px=px, xx=self.patch_size,
        )
        return patches


class ViTPatchLinear(nn.Linear):
    def __init__(self, patch_size: int, embed_dim: int, bias: bool = False, **factory):
        super().__init__(
            3 * (patch_size ** 2),
            embed_dim,
            bias=bias,
            **factory
        )
        self.patch_size = patch_size

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        if self.bias is not None:
            self.bias.data.copy_(state_dict[f'{prefix}bias'])

        chk_weight = state_dict[f'{prefix}weight']
        if chk_weight.shape != self.weight.shape:
            src_patch_size = int(math.sqrt(chk_weight.shape[1] // 3))

            assert (src_patch_size ** 2) * 3 == chk_weight.shape[1], 'Unable to interpolate non-square patch size'

            chk_weight = rearrange(chk_weight, 'b (c h w) -> b c h w', c=3, h=src_patch_size, w=src_patch_size)
            chk_weight = F.interpolate(chk_weight, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=True, antialias=False)
            chk_weight = rearrange(chk_weight, 'b c h w -> b (c h w)')
        self.weight.data.copy_(chk_weight)