File size: 11,983 Bytes
b240ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import math
from typing import Union, Tuple, Optional
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
from .cls_token import ClsToken
input_dim_t = Union[int, Tuple[int, int]]
try:
# raise ImportError()
from indirect_grid_sample import indirect_grid_sample
except ImportError:
indirect_grid_sample = None
class ViTPatchGenerator(nn.Module):
def __init__(self,
patch_size: int,
embed_dim: int,
input_dims: input_dim_t,
abs_pos: bool = True,
normalize_patches: bool = False,
cls_token: bool = False,
max_input_dims: Optional[input_dim_t] = None,
pos_dropout: float = 0.0,
return_pos_enc: bool = False,
num_cls_tokens: int = 1,
register_multiple: Optional[int] = None,
num_registers: Optional[int] = None,
patch_bias: bool = False,
device=None, dtype=None,
):
super().__init__()
if isinstance(input_dims, int):
input_dims = (input_dims, input_dims)
if max_input_dims is None:
max_input_dims = input_dims
if isinstance(max_input_dims, int):
max_input_dims = (max_input_dims, max_input_dims)
max_input_dims = tuple(
int(math.ceil(d / patch_size) * patch_size)
for d in max_input_dims
)
self.cpe_mode = max_input_dims != input_dims
self.pos_dropout = pos_dropout
self.return_pos_enc = return_pos_enc
factory = dict(device=device, dtype=dtype)
self.patch_size = patch_size
self.abs_pos = abs_pos
self.embed_dim = embed_dim
self.num_rows = max_input_dims[0] // patch_size
self.num_cols = max_input_dims[1] // patch_size
self.input_dims = tuple(d // patch_size for d in input_dims)
self.num_patches = self.num_rows * self.num_cols
self.max_input_dims = max_input_dims
self.im_to_patches = Im2Patches(patch_size)
self.embedder = ViTPatchLinear(patch_size, embed_dim, bias=patch_bias, **factory)
if abs_pos:
scale = embed_dim ** -0.5
self.pos_embed = nn.Parameter(torch.randn(1, self.num_patches, embed_dim, **factory) * scale)
self.cls_token = ClsToken(
embed_dim,
num_tokens=num_cls_tokens,
enabled=cls_token,
register_multiple=register_multiple,
num_registers=num_registers,
)
self.patch_normalizer = nn.LayerNorm(embed_dim) if normalize_patches else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
patches = self.embed_patches(x)
patches, pos_enc = self.apply_pos_enc(patches, input_size=x.shape[2:])
patches = self.cls_token(patches)
patches = self.patch_normalizer(patches)
if self.return_pos_enc:
return patches, pos_enc
return patches
@property
def apply_cls_token(self):
return self.cls_token.enabled
@property
def num_cls_tokens(self):
return self.cls_token.num_tokens
@property
def num_registers(self):
return self.cls_token.num_registers
@property
def num_skip(self):
return self.num_cls_tokens + self.num_registers
def no_weight_decay(self):
return [
'pos_embed',
]
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
if self.abs_pos:
self._load_embed(state_dict[f'{prefix}pos_embed'], self.pos_embed)
def _load_embed(self, src_embed: torch.Tensor, targ_embed: nn.Parameter):
if src_embed.shape != targ_embed.shape:
src_size = int(math.sqrt(src_embed.shape[1]))
assert src_size ** 2 == src_embed.shape[1], 'Unable to interpolate non-square embedding'
src_embed = rearrange(src_embed, 'b (h w) c -> b c h w', h=src_size, w=src_size)
src_embed = F.interpolate(src_embed, size=(self.num_rows, self.num_cols), mode='bicubic', align_corners=True, antialias=False)
src_embed = rearrange(src_embed, 'b c h w -> b (h w) c')
targ_embed.data.copy_(src_embed)
def _load_projection(self, src_proj_weight: torch.Tensor, targ_proj_weight: torch.Tensor):
if src_proj_weight.shape != targ_proj_weight.shape:
src_patch_size = int(math.sqrt(src_proj_weight.shape[1] // 3))
assert (src_patch_size ** 2) * 3 == src_proj_weight.shape[1], 'Unable to interpolate non-square patch size'
src_proj_weight = rearrange(src_proj_weight, 'b (c h w) -> b c h w', c=3, h=src_patch_size, w=src_patch_size)
src_proj_weight = F.interpolate(src_proj_weight, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=True, antialias=False)
src_proj_weight = rearrange(src_proj_weight, 'b c h w -> b (c h w)')
targ_proj_weight.data.copy_(src_proj_weight)
def embed_patches(self, x: torch.Tensor) -> torch.Tensor:
patches = self.im_to_patches(x)
patches = self.embedder(patches)
return patches
def apply_pos_enc(self,
patches: torch.Tensor,
patch_idxs: Optional[torch.Tensor] = None,
input_size: Optional[Tuple[int, int]] = None,
) -> torch.Tensor:
if not self.abs_pos:
return patches
pos_enc = self.get_pos_enc(patches.shape[0], patch_idxs, input_size)
if self.training and self.pos_dropout > 0:
keeps = torch.rand(patches.shape[0], 1, 1, dtype=pos_enc.dtype, device=pos_enc.device) > self.pos_dropout
pos_enc_drop = torch.where(keeps, pos_enc, 0)
else:
pos_enc_drop = pos_enc
return patches + pos_enc_drop, pos_enc
def get_pos_enc(self,
batch_size: int,
patch_idxs: Optional[torch.Tensor] = None,
input_size: Optional[Tuple[int, int]] = None,
) -> torch.Tensor:
if input_size is None:
input_dims = self.input_dims
else:
input_dims = tuple(d // self.patch_size for d in input_size)
pos_embed = self._get_pos_embeddings(batch_size, input_dims)
if patch_idxs is None:
return pos_embed
exp_patch_idxs = patch_idxs.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1])
pos_embed = torch.gather(pos_embed.expand(patch_idxs.shape[0], -1, -1), dim=1, index=exp_patch_idxs)
return pos_embed
def _get_pos_embeddings(self, batch_size: int, input_dims: Tuple[int, int]):
if (self.num_rows, self.num_cols) == input_dims:
return self.pos_embed
pos_embed = self.pos_embed.reshape(1, self.num_rows, self.num_cols, -1).permute(0, 3, 1, 2)
def window_select(pos_embed):
if input_dims[0] < pos_embed.shape[-2]:
pos_embed = pos_embed[..., :input_dims[0], :]
if input_dims[1] < pos_embed.shape[-1]:
pos_embed = pos_embed[..., :, :input_dims[1]]
return pos_embed
if self.cpe_mode:
if self.training:
min_scale = math.sqrt(0.1)
scale = torch.rand(batch_size, 1, 1, device=pos_embed.device) * (1 - min_scale) + min_scale
aspect_min = math.log(3 / 4)
aspect_max = -aspect_min
aspect = torch.exp(torch.rand(batch_size, 1, 1, device=pos_embed.device) * (aspect_max - aspect_min) + aspect_min)
scale_x = scale * aspect
scale_y = scale * (1 / aspect)
scale_xy = torch.stack([scale_x, scale_y], dim=-1).clamp_(0, 1)
pos_xy = torch.rand(batch_size, 1, 1, 2, device=pos_embed.device) * (1 - scale_xy)
lin_x = torch.linspace(0, 1, steps=input_dims[1], device=pos_embed.device)[None, None].expand(batch_size, input_dims[0], -1)
lin_y = torch.linspace(0, 1, steps=input_dims[0], device=pos_embed.device)[None, :, None].expand(batch_size, -1, input_dims[1])
lin_xy = torch.stack([lin_x, lin_y], dim=-1)
grid_xy = lin_xy * scale_xy + pos_xy
# Convert to [-1, 1] range
grid_xy.mul_(2).sub_(1)
pos_embed = F.grid_sample(
pos_embed.float().expand(batch_size, -1, -1, -1),
grid=grid_xy,
mode='bilinear',
padding_mode='zeros',
align_corners=True,
).to(pos_embed.dtype)
else:
# i_rows, i_cols = input_dims
# p_rows, p_cols = pos_embed.shape[2:]
# if i_rows <= p_rows and i_cols <= p_cols:
# left = (p_cols - i_cols) // 2
# top = (p_rows - i_rows) // 2
# pos_embed = pos_embed[..., top:top+i_rows, left:left+i_cols]
# else:
max_dim = max(input_dims)
pos_embed = F.interpolate(pos_embed.float(), size=(max_dim, max_dim), align_corners=True, mode='bilinear').to(pos_embed.dtype)
pos_embed = window_select(pos_embed)
else:
pos_embed = window_select(pos_embed)
if pos_embed.shape[-2:] != input_dims:
pos_embed = F.interpolate(pos_embed.float(), size=input_dims, align_corners=True, mode='bilinear').to(pos_embed.dtype)
pos_embed = pos_embed.flatten(2).permute(0, 2, 1)
return pos_embed
class Im2Patches(nn.Module):
def __init__(self, patch_size: int):
super().__init__()
self.patch_size = patch_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.patch_size == 1:
patches = x.flatten(2)
patches = patches.permute(0, 2, 1)
return patches
py = x.shape[-2] // self.patch_size
px = x.shape[-1] // self.patch_size
patches = rearrange(x, 'b c (py yy) (px xx) -> b (py px) (c yy xx)',
py=py, yy=self.patch_size,
px=px, xx=self.patch_size,
)
return patches
class ViTPatchLinear(nn.Linear):
def __init__(self, patch_size: int, embed_dim: int, bias: bool = False, **factory):
super().__init__(
3 * (patch_size ** 2),
embed_dim,
bias=bias,
**factory
)
self.patch_size = patch_size
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
if self.bias is not None:
self.bias.data.copy_(state_dict[f'{prefix}bias'])
chk_weight = state_dict[f'{prefix}weight']
if chk_weight.shape != self.weight.shape:
src_patch_size = int(math.sqrt(chk_weight.shape[1] // 3))
assert (src_patch_size ** 2) * 3 == chk_weight.shape[1], 'Unable to interpolate non-square patch size'
chk_weight = rearrange(chk_weight, 'b (c h w) -> b c h w', c=3, h=src_patch_size, w=src_patch_size)
chk_weight = F.interpolate(chk_weight, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=True, antialias=False)
chk_weight = rearrange(chk_weight, 'b c h w -> b (c h w)')
self.weight.data.copy_(chk_weight)
|