# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from torch import nn from timm.models import register_model from timm.models.vision_transformer import VisionTransformer, _create_vision_transformer, Mlp @register_model def vit_tiny_patch14_224(pretrained=False, **kwargs) -> VisionTransformer: """ ViT-Tiny (Vit-Ti/16) """ model_args = dict(patch_size=14, embed_dim=192, depth=12, num_heads=3) model = _create_vision_transformer('vit_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_patch14_224(pretrained=False, **kwargs) -> VisionTransformer: """ ViT-Small (ViT-S/16) """ model_args = dict(patch_size=14, embed_dim=384, depth=12, num_heads=6) model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_patch14_224(pretrained=False, **kwargs) -> VisionTransformer: """ ViT-Base (ViT-B/14) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. """ model_args = dict(patch_size=14, embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer('vit_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_huge_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: """ ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_args = dict(patch_size=16, embed_dim=1280, depth=32, num_heads=16) if pretrained: # There is no pretrained version of ViT-H/16, but we can adapt a ViT-H/14 for this purpose model = _create_vision_transformer('vit_huge_patch14_224', pretrained=True, **dict(model_args, **kwargs)) else: model = _create_vision_transformer('vit_huge_patch16_224', pretrained=False, **dict(model_args, **kwargs)) return model @register_model def vit_huge_patch16_224_mlpnorm(pretrained=False, **kwargs) -> VisionTransformer: """ ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929). """ model = vit_huge_patch16_224(pretrained=pretrained, **kwargs) for m in model.modules(): if isinstance(m, Mlp) and not isinstance(m.norm, nn.LayerNorm): m.norm = nn.LayerNorm(m.fc1.out_features) return model @register_model def vit_bigG_patch14_224(pretrained=False, **kwargs) -> VisionTransformer: model_args = dict(patch_size=14, embed_dim=1664, depth=48, num_heads=16, init_values=1e-6) model = _create_vision_transformer('vit_bigG_patch14', pretrained=False, **dict(model_args, **kwargs)) return model