sarahyurick
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -83,6 +83,43 @@ NeMo Curator improves generative AI model accuracy by processing text, image, an
|
|
83 |
|
84 |
The inference code for this model is available through the NeMo Curator GitHub repository. Check out this [example notebook](https://github.com/NVIDIA/NeMo-Curator/tree/main/tutorials/distributed_data_classification) to get started.
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# Input & Output
|
87 |
## Input
|
88 |
- Input Type: Text
|
|
|
83 |
|
84 |
The inference code for this model is available through the NeMo Curator GitHub repository. Check out this [example notebook](https://github.com/NVIDIA/NeMo-Curator/tree/main/tutorials/distributed_data_classification) to get started.
|
85 |
|
86 |
+
# How to Use in Transformers
|
87 |
+
To use the multilingual domain classifier, use the following code:
|
88 |
+
```
|
89 |
+
import torch
|
90 |
+
from torch import nn
|
91 |
+
from transformers import AutoModel, AutoTokenizer, AutoConfig
|
92 |
+
from huggingface_hub import PyTorchModelHubMixin
|
93 |
+
|
94 |
+
class CustomModel(nn.Module, PyTorchModelHubMixin):
|
95 |
+
def __init__(self, config):
|
96 |
+
super(CustomModel, self).__init__()
|
97 |
+
self.model = AutoModel.from_pretrained(config["base_model"])
|
98 |
+
self.dropout = nn.Dropout(config["fc_dropout"])
|
99 |
+
self.fc = nn.Linear(self.model.config.hidden_size, len(config["id2label"]))
|
100 |
+
|
101 |
+
def forward(self, input_ids, attention_mask):
|
102 |
+
features = self.model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
|
103 |
+
dropped = self.dropout(features)
|
104 |
+
outputs = self.fc(dropped)
|
105 |
+
return torch.softmax(outputs[:, 0, :], dim=1)
|
106 |
+
|
107 |
+
# Setup configuration and model
|
108 |
+
config = AutoConfig.from_pretrained("nvidia/multilingual-domain-classifier")
|
109 |
+
tokenizer = AutoTokenizer.from_pretrained("nvidia/multilingual-domain-classifier")
|
110 |
+
model = CustomModel.from_pretrained("nvidia/multilingual-domain-classifier")
|
111 |
+
|
112 |
+
# Prepare and process inputs
|
113 |
+
text_samples = ["Los deportes son un dominio popular", "La política es un dominio popular"]
|
114 |
+
inputs = tokenizer(text_samples, return_tensors="pt", padding="longest", truncation=True)
|
115 |
+
outputs = model(inputs["input_ids"], inputs["attention_mask"])
|
116 |
+
|
117 |
+
# Predict and display results
|
118 |
+
predicted_classes = torch.argmax(outputs, dim=1)
|
119 |
+
predicted_domains = [config.id2label[class_idx.item()] for class_idx in predicted_classes.cpu().numpy()]
|
120 |
+
print(predicted_domains)
|
121 |
+
```
|
122 |
+
|
123 |
# Input & Output
|
124 |
## Input
|
125 |
- Input Type: Text
|