NeMo
PyTorch
English
seq2seq
masked language modeling
nemo-megatron-t5-3B / t5_3b_nemo_config.yaml
MaximumEntropy's picture
Upload t5_3b_nemo_config.yaml
1261159
raw
history blame
3.75 kB
micro_batch_size: 27
tensor_model_parallel_size: 2
pipeline_model_parallel_size: 1
make_vocab_size_divisible_by: 128
pre_process: true
post_process: true
megatron_amp_O2: false
seq_length: 512
max_position_embeddings: 512
num_layers: 24
hidden_size: 1024
ffn_hidden_size: 16384
num_attention_heads: 32
init_method_std: 0.015
hidden_dropout: 0.1
attention_dropout: 0.1
kv_channels: 128
apply_query_key_layer_scaling: true
layernorm_epsilon: 1.0e-05
persist_layer_norm: true
gradient_as_bucket_view: true
encoder_arch: transformer
decoder_arch: transformer
activation: gelu
tokenizer:
library: megatron
type: BertWordPieceCase
model: null
vocab_file: bert_vocab.txt
merge_file: null
num_sentinel_tokens: 100
native_amp_init_scale: 4294967296
native_amp_growth_interval: 1000
fp32_residual_connection: false
fp16_lm_cross_entropy: false
seed: 1234
use_cpu_initialization: false
onnx_safe: false
activations_checkpoint_method: null
activations_checkpoint_num_layers: 1
data:
data_prefix:
- 0.0333
- /preproc_data/my-t5_00_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_01_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_02_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_03_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_04_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_05_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_06_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_07_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_08_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_09_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_10_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_11_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_12_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_13_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_14_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_15_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_16_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_17_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_18_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_19_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_20_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_21_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_22_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_23_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_24_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_25_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_26_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_27_bert_tokenizer_text_document
- 0.0333
- /preproc_data/my-t5_28_bert_tokenizer_text_document
- 0.0334
- /preproc_data/my-t5_29_bert_tokenizer_text_document
data_impl: mmap
splits_string: 99982,9,9
seq_length: 512
seq_length_dec: 128
skip_warmup: true
num_workers: 4
dataloader_type: single
masked_lm_prob: 0.15
dataset_type: t5
short_seq_prob: 0.0
max_ngram_size: 10
mean_ngram_size: null
geometric_dist: true
permutation: false
whole_word_masking: true
favor_longer_ngrams: false
optim:
name: fused_adam
lr: 0.0001
betas:
- 0.9
- 0.999
eps: 1.0e-08
weight_decay: 0.01
sched:
name: WarmupAnnealing
min_lr: 1.0e-05
last_epoch: -1
warmup_ratio: 0.01
precision: bf16
target: nemo.collections.nlp.models.language_modeling.megatron_t5_model.MegatronT5Model
nemo_version: 1.7.1
vocab_file: nemo:6b9a052d82a744389fbe256fea20c06f_vocab.txt