nztinversive commited on
Commit
249f390
·
verified ·
1 Parent(s): 8407d36

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md CHANGED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ language:
2
+
3
+ en
4
+ license: mit
5
+ library_name: transformers
6
+ tags:
7
+ llama
8
+ uncensored
9
+ abliteration
10
+ pipeline_tag: text-generation
11
+
12
+
13
+ Uncensoring LLaMA 3.2 1B Model
14
+ Overview
15
+ This repository demonstrates the process of uncensoring a 1-billion-parameter LLaMA 3.2 model using "abliteration." Abliteration allows the model to generate outputs without the restrictions imposed by its default safety mechanisms. The goal is to give developers more control over the model's output by removing censorship filters while ensuring responsible AI usage.
16
+ Disclaimer: This model and methodology are intended for research and educational purposes only. Uncensoring models must be done with ethical considerations, and it's critical to avoid harmful or irresponsible applications.
17
+ Model Details
18
+
19
+ Model Name: LLaMA 3.2 (1B Parameters)
20
+ Version: Uncensored variant via the Abliteration technique
21
+ Framework: PyTorch
22
+ Source: Hugging Face LLaMA model
23
+
24
+ Abliteration: The Process
25
+ Abliteration removes the filtering mechanisms from the model's decoding process, allowing more open-ended responses. It's achieved by modifying how the logits (the model's output probabilities) are handled.
26
+ How to Use
27
+ To use the uncensored model, follow the instructions below.
28
+ Requirements
29
+ To get started, install the necessary packages:
30
+ bashCopypip install torch transformers
31
+ Loading the Uncensored Model
32
+ You can load the uncensored model directly using the Hugging Face transformers library.
33
+ pythonCopyfrom transformers import AutoModelForCausalLM, AutoTokenizer
34
+
35
+ # Load the tokenizer and model
36
+ tokenizer = AutoTokenizer.from_pretrained("your-hf-username/uncensored-llama-3.2-1b")
37
+ model = AutoModelForCausalLM.from_pretrained("your-hf-username/uncensored-llama-3.2-1b")
38
+ Generating Text
39
+ You can generate text with the uncensored model using the following code:
40
+ pythonCopydef uncensored_generate(model, tokenizer, input_text):
41
+ inputs = tokenizer(input_text, return_tensors="pt").input_ids
42
+
43
+ # Generate the output without applying safety filters
44
+ outputs = model.generate(inputs, max_length=100, do_sample=True, temperature=0.9, top_k=50)
45
+ decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
46
+ return decoded_output
47
+
48
+ # Example usage
49
+ input_text = "What are your thoughts on controversial topics?"
50
+ output = uncensored_generate(model, tokenizer, input_text)
51
+ print(output)
52
+ Fine-Tuning the Uncensored Model (Optional)
53
+ For optimal results, you can fine-tune the model on uncensored datasets. Here's a simple way to set up fine-tuning using the Hugging Face Trainer:
54
+ pythonCopyfrom transformers import Trainer, TrainingArguments
55
+
56
+ training_args = TrainingArguments(
57
+ output_dir="./results",
58
+ num_train_epochs=1,
59
+ per_device_train_batch_size=2,
60
+ save_steps=10_000,
61
+ save_total_limit=2,
62
+ )
63
+
64
+ trainer = Trainer(
65
+ model=model,
66
+ args=training_args,
67
+ train_dataset=uncensored_dataset # Load your uncensored dataset
68
+ )
69
+
70
+ trainer.train()
71
+ Ethical Considerations
72
+ While this model has the ability to generate uncensored responses, it is critical to use it responsibly. Uncensored models can be prone to generating harmful or inappropriate content. Ensure you are aware of the implications of deploying uncensored models and avoid applications that may lead to unethical outcomes.
73
+ How to Contribute
74
+ Contributions to the project are welcome! You can fine-tune the model, improve performance, or experiment with different ways to uncensor the model.
75
+
76
+ Fork this repository on Hugging Face.
77
+ Make changes to the model or code.
78
+ Share your results and improvements.
79
+
80
+ License
81
+ This model is released under the MIT License.
82
+ References
83
+
84
+ Original blog post: Uncensor any LLM with Abliteration
85
+ Hugging Face Transformers Documentation