nztinversive commited on
Commit
43ca2ad
·
verified ·
1 Parent(s): 8655e38

Delete readme.md

Browse files
Files changed (1) hide show
  1. readme.md +0 -118
readme.md DELETED
@@ -1,118 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- license: mit
5
- library_name: transformers
6
- tags:
7
- - llama
8
- - uncensored
9
- - abliteration
10
- pipeline_tag: text-generation
11
- ---
12
-
13
- # Uncensoring LLaMA 3.2 1B Model
14
-
15
- ## Overview
16
-
17
- This repository demonstrates the process of uncensoring a 1-billion-parameter LLaMA 3.2 model using "abliteration." Abliteration allows the model to generate outputs without the restrictions imposed by its default safety mechanisms. The goal is to give developers more control over the model's output by removing censorship filters while ensuring responsible AI usage.
18
-
19
- **Disclaimer:** This model and methodology are intended for research and educational purposes only. Uncensoring models must be done with ethical considerations, and it's critical to avoid harmful or irresponsible applications.
20
-
21
- ## Model Details
22
-
23
- * **Model Name**: LLaMA 3.2 (1B Parameters)
24
- * **Version**: Uncensored variant via the Abliteration technique
25
- * **Framework**: PyTorch
26
- * **Source**: Hugging Face LLaMA model
27
-
28
- ## Abliteration: The Process
29
-
30
- Abliteration removes the filtering mechanisms from the model's decoding process, allowing more open-ended responses. It's achieved by modifying how the logits (the model's output probabilities) are handled.
31
-
32
- ## How to Use
33
-
34
- To use the uncensored model, follow the instructions below.
35
-
36
- ### Requirements
37
-
38
- To get started, install the necessary packages:
39
-
40
- ```bash
41
- pip install torch transformers
42
- ```
43
-
44
- ### Loading the Uncensored Model
45
-
46
- You can load the uncensored model directly using the Hugging Face `transformers` library.
47
-
48
- ```python
49
- from transformers import AutoModelForCausalLM, AutoTokenizer
50
-
51
- # Load the tokenizer and model
52
- tokenizer = AutoTokenizer.from_pretrained("your-hf-username/uncensored-llama-3.2-1b")
53
- model = AutoModelForCausalLM.from_pretrained("your-hf-username/uncensored-llama-3.2-1b")
54
- ```
55
-
56
- ### Generating Text
57
-
58
- You can generate text with the uncensored model using the following code:
59
-
60
- ```python
61
- def uncensored_generate(model, tokenizer, input_text):
62
- inputs = tokenizer(input_text, return_tensors="pt").input_ids
63
-
64
- # Generate the output without applying safety filters
65
- outputs = model.generate(inputs, max_length=100, do_sample=True, temperature=0.9, top_k=50)
66
- decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
67
- return decoded_output
68
-
69
- # Example usage
70
- input_text = "What are your thoughts on controversial topics?"
71
- output = uncensored_generate(model, tokenizer, input_text)
72
- print(output)
73
- ```
74
-
75
- ### Fine-Tuning the Uncensored Model (Optional)
76
-
77
- For optimal results, you can fine-tune the model on uncensored datasets. Here's a simple way to set up fine-tuning using the Hugging Face `Trainer`:
78
-
79
- ```python
80
- from transformers import Trainer, TrainingArguments
81
-
82
- training_args = TrainingArguments(
83
- output_dir="./results",
84
- num_train_epochs=1,
85
- per_device_train_batch_size=2,
86
- save_steps=10_000,
87
- save_total_limit=2,
88
- )
89
-
90
- trainer = Trainer(
91
- model=model,
92
- args=training_args,
93
- train_dataset=uncensored_dataset # Load your uncensored dataset
94
- )
95
-
96
- trainer.train()
97
- ```
98
-
99
- ## Ethical Considerations
100
-
101
- While this model has the ability to generate uncensored responses, it is critical to use it responsibly. Uncensored models can be prone to generating harmful or inappropriate content. Ensure you are aware of the implications of deploying uncensored models and avoid applications that may lead to unethical outcomes.
102
-
103
- ## How to Contribute
104
-
105
- Contributions to the project are welcome! You can fine-tune the model, improve performance, or experiment with different ways to uncensor the model.
106
-
107
- 1. Fork this repository on Hugging Face.
108
- 2. Make changes to the model or code.
109
- 3. Share your results and improvements.
110
-
111
- ## License
112
-
113
- This model is released under the MIT License.
114
-
115
- ## References
116
-
117
- * Original blog post: Uncensor any LLM with Abliteration
118
- * Hugging Face Transformers Documentation