File size: 19,624 Bytes
0702527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%reload_ext autoreload\n",
    "%autoreload 2\n",
    "if '__file__' not in globals():\n",
    "    __file__, __name__ = globals()['__vsc_ipynb_file__'], '__ipynb__'\n",
    "    import types, sys; sys.modules['__ipynb__'] = types.ModuleType('__ipynb__')\n",
    "    from IPython.core.magic import register_cell_magic\n",
    "    @register_cell_magic\n",
    "    def skip_if(flag, cell): exec(cell, globals())if flag and not eval(flag) else print('Cell skipped...')\n",
    "\n",
    "import sys, os\n",
    "if os.path.abspath('.') not in sys.path: sys.path.append(os.path.abspath('.'))\n",
    "\n",
    "import os, huggingface_hub # !pip install huggingface_hub[hf_transfer]\n",
    "huggingface_hub.login(token = os.environ.get('HF_TOKEN'), add_to_git_credential=True)\n",
    "\n",
    "import inspect\n",
    "from pathlib import Path\n",
    "from tqdm import tqdm\n",
    "from glob import glob\n",
    "import numpy as np; np.set_printoptions(precision=8, suppress=True); np.random.seed(42)\n",
    "\n",
    "class text_color:\n",
    "    black,red,green,yellow,blue,magenta,cyan,white,gray = [*range(30,38), 90] # fgclr,  [*range(90,98), ''] # light-fgclr\n",
    "    bold, italic, underline, strike = 1, 3, 4, 9  # attrs supported on vscode notebook.\n",
    "    def __init__(self, fg,bg=0,attr=0):\n",
    "        attr = f'{attr};' if attr > 0 else ''\n",
    "        bg = f'{bg+10};' if bg > 0 else ''\n",
    "        self.clr = f'\\33[{attr}{bg}{fg}m'\n",
    "\n",
    "    def __ror__(self, obj): return self.clr + str(obj) + '\\33[0m'\n",
    "    @staticmethod\n",
    "    def all(): return (text_color(clr) for clr in [*range(30,38), 90])\n",
    "\n",
    "black,red,green,yellow,blue,magenta,cyan,white,gray = text_color.all()\n",
    "\n",
    "class cout:\n",
    "    def __ror__(self, obj): print(f'[{inspect.stack()[1].lineno}] {str(obj)}')\n",
    "    def __call__(self, *args, **kwds): print(f'[{inspect.stack()[1].lineno+1}]', *args, **kwds)\n",
    "out = cout()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### load weight"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# https://colab.research.google.com/drive/1uskRfCesambdQrhGp2s5wx6zGwSUR0Sh\n",
    "# https://huggingface.co/microsoft/Phi-3.5-mini-instruct/blob/main/config.json\n",
    "# https://github.com/microsoft/Phi-3CookBook\n",
    "# !pip install -q sentencepiece\n",
    "\n",
    "import torch, peft, transformers\n",
    "\n",
    "model_id = \"microsoft/Phi-3.5-mini-instruct\" # 128k, 7.7GB\n",
    "model_id = \"outputs_unslot/merged-model\" # ft.\n",
    "\n",
    "model = transformers.AutoModelForCausalLM.from_pretrained(\n",
    "    model_id,\n",
    "    device_map=\"auto\",\n",
    "    torch_dtype=torch.bfloat16,\n",
    "    trust_remote_code=True,\n",
    "    low_cpu_mem_usage=True,\n",
    "    attn_implementation=\"flash_attention_2\",\n",
    ")\n",
    "\n",
    "# model_id = \"outputs_unslot/model/lora\"\n",
    "# model = peft.AutoPeftModelForCausalLM.from_pretrained(\n",
    "#     model_id, device_map=\"cuda\",\n",
    "#     torch_dtype=\"auto\",\n",
    "#     trust_remote_code=True,\n",
    "#     low_cpu_mem_usage=True,\n",
    "#     attn_implementation=\"flash_attention_2\")\n",
    "\n",
    "model.config.use_cache = True\n",
    "model.eval()\n",
    "print(model)\n",
    "\n",
    "tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 182,
   "metadata": {},
   "outputs": [],
   "source": [
    "from IPython.display import display, Markdown, clear_output\n",
    "\n",
    "class CallbackTextStreamer(transformers.TextStreamer):\n",
    "    def __init__(self, markdown=False, **kwargs):\n",
    "        super().__init__(**kwargs)\n",
    "        self.markdown = markdown\n",
    "        self.ans = \"\"\n",
    "\n",
    "    def on_finalized_text(self, text: str, stream_end: bool = False):\n",
    "        super().on_finalized_text(text, stream_end)\n",
    "        self.ans += text\n",
    "        if stream_end:\n",
    "            self.finally_markdown()\n",
    "\n",
    "    def finally_markdown(self):\n",
    "        if self.markdown:\n",
    "            clear_output(wait=False)\n",
    "            display(Markdown(self.ans))\n",
    "\n",
    "def generate(input_text, system_prompt=\"\",max_length=512, stream=True):\n",
    "\n",
    "    if isinstance(input_text, list):\n",
    "        messages = input_text\n",
    "    else:\n",
    "        if not system_prompt:\n",
    "            system_prompt = \"You are a friendly and helpful assistant\"\n",
    "        messages = [\n",
    "            { \"role\": \"system\", \"content\": system_prompt,},\n",
    "            {\"role\": \"user\", \"content\": input_text},\n",
    "        ]\n",
    "\n",
    "    streamer = CallbackTextStreamer(tokenizer=tokenizer, skip_prompt=True) if stream else None\n",
    "\n",
    "    prompt = tokenizer.apply_chat_template(messages,\n",
    "                                           tokenize=False,\n",
    "                                           add_generation_prompt=True)\n",
    "\n",
    "    inputs = tokenizer.encode(prompt, add_special_tokens=True, return_tensors=\"pt\").to(\"cuda\")\n",
    "    outputs = model.generate(input_ids=inputs.to(model.device),\n",
    "                             max_new_tokens=max_length,\n",
    "                             do_sample=True,\n",
    "                             temperature=0.1,\n",
    "                             top_k=50,\n",
    "                             streamer=streamer,\n",
    "                             )\n",
    "    # text = ''.join([t for t in streamer])\n",
    "\n",
    "    text = tokenizer.decode(outputs[0, len(inputs[0]):],skip_special_tokens=True, clean_up_tokenization_spaces=True)\n",
    "    return text\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 183,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "So the answer: 16\n",
      "\n",
      "Here's the breakdown:\n",
      "\n",
      "1. Kaylee has sold 12 boxes of lemon biscuits.\n",
      "2. She has sold 5 boxes of chocolate biscuits.\n",
      "3. She has sold 4 boxes of oatmeal biscuits.\n",
      "4. Total boxes sold so far: 12 (lemon) + 5 (chocolate) + 4 (oatmeal) = 21 boxes.\n",
      "5. Kaylee needs to sell a total of 33 boxes.\n",
      "6. Boxes still needed to be sold: 33 (total) - 21 (sold) = 12 boxes.\n",
      "\n",
      "Therefore, Kaylee needs to sell 12 more boxes of biscuits.<|end|>\n"
     ]
    }
   ],
   "source": [
    "# reformat answer for better cot training\n",
    "#\n",
    "system = \"\"\"Following is dataset to fine tuning llm with cot concept.\n",
    "To make more good dataset, reformat assistant's cot answer as numbering. And lastly the answer with leading words 'So the answer: '. Answer the reformatted string only.\"\"\"\n",
    "\n",
    "content = '''\n",
    "{\"type\": \"cot\", \"messages\": [{\"role\": \"user\", \"content\": \"Kaylee needs to sell 33 boxes of biscuits. So far, she has sold 12 boxes of lemon biscuits to her aunt, 5 boxes of chocolate biscuits to her mother, and 4 boxes of oatmeal biscuits to a neighbor. How many more boxes of biscuits does Kaylee need to sell? Let's think first. Chain of thought:\"}, {\"role\": \"assistant\", \"content\": \"To solve this problem, we need to find out how many boxes of biscuits Kaylee has sold so far and then subtract that number from the total number of boxes she needs to sell. We can do this by adding up the number of boxes she has sold and then subtracting that sum from the total number of boxes she needs to sell.\"}], \"source\": \"open-orca\"}\n",
    "'''\n",
    "# 33 - (12 + 5 + 4) = 12\n",
    "\n",
    "content = '''\\\n",
    "user query: \"Kaylee needs to sell 33 boxes of biscuits. So far, she has sold 12 boxes of lemon biscuits to her aunt, 5 boxes of chocolate biscuits to her mother, and 4 boxes of oatmeal biscuits to a neighbor. How many more boxes of biscuits does Kaylee need to sell? Let's think first. Chain of thought:\"\n",
    "\n",
    "assistant answer: \"To solve this problem, we need to find out how many boxes of biscuits Kaylee has sold so far and then subtract that number from the total number of boxes she needs to sell. We can do this by adding up the number of boxes she has sold and then subtracting that sum from the total number of boxes she needs to sell.\"\n",
    "'''\n",
    "gen = generate(content, system, max_length=512)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Markdown( generate('Write a detailed analogy between mathematics and a lighthouse.',\n",
    "         system_prompt=\"You are Phi, a small language model trained by Microsoft. Write out your reasoning step-by-step to be sure you get the right answers!\",\n",
    "         max_length=1024))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "generate('Write a short email to Sam Altman giving reasons to open source GPT-4',\n",
    "         system_prompt=\"You are Phi-3, a large language model trained by Microsoft. Write out your reasoning step-by-step to be sure you get the right answers!\",\n",
    "         max_length=512, stream=True);"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "generate('''```python\n",
    "def detect_prime(n):\n",
    "   \"\"\"\n",
    "   detect if a number is a prime number or not. return True or False\n",
    "   \"\"\"''',\n",
    "   system_prompt=\"You are a genius python coder, please think carefully and write the following code:\");\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "gen = generate('Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?',\n",
    "         system_prompt=\"You are Phi-3, a large language model trained by Microsoft. Write out your reasoning step-by-step to be sure you get the right answers!\",\n",
    "         max_length=512)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "gen = generate(\"Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?\",\n",
    "         system_prompt=\"Write out your reasoning step-by-step to be sure you get the right answers!\",\n",
    "         max_length=512)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### function call"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import datasets, re, json\n",
    "\n",
    "ds_test = datasets.load_dataset(\"json\", data_files=\"xlam-dataset-60k-qwen2-test.jsonl\")['train']\n",
    "\n",
    "system_prompt = \"Write out your reasoning step-by-step to be sure you get the right answers!\"\n",
    "\n",
    "\n",
    "for i, sample in enumerate(ds_test):\n",
    "    message = sample[\"messages\"]\n",
    "    user_content = message[0]['content']\n",
    "    # message.insert(0, dict(role='system', content=system_prompt))\n",
    "\n",
    "    ans = message[-1][\"content\"]\n",
    "    gen = generate(message[:-1], stream=False)\n",
    "    gen = gen.replace('```json', '').replace('```', '')\n",
    "\n",
    "    true,false = True,False\n",
    "    gen = json.dumps(eval(gen), indent=3)\n",
    "    ans = json.dumps(eval(ans), indent=3)\n",
    "\n",
    "    if gen != ans:\n",
    "        # print(f'{i}.query:', user_content[-200:]|gray)\n",
    "        print('gen:', gen|red)\n",
    "        print('ans:', ans|green)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### from https://deepgram.com/learn/chain-of-thought-prompting-guide"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 184,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Roger starts with 5 tennis balls.\n",
      "\n",
      "He buys 2 more cans, and each can has 3 tennis balls. So, the number of tennis balls in the cans is:\n",
      "2 cans * 3 tennis balls per can = 6 tennis balls\n",
      "\n",
      "Now, we add the tennis balls he already had to the ones he bought:\n",
      "5 tennis balls + 6 tennis balls = 11 tennis balls\n",
      "\n",
      "Roger now has a total of 11 tennis balls.<|end|>\n",
      "answer: 11\n"
     ]
    }
   ],
   "source": [
    "prompts = [\n",
    "(\"Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?\", 11),\n",
    "(\"Yes or no: Would a pear sink in water?\",None),\n",
    "(\"How would you bring me something that isn’t a fruit?\",None),\n",
    "(\"How many keystrokes are needed to type the numbers from 1 to 500?\", 1392),\n",
    "(\"The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?\", \"05/23/1943\"),\n",
    "(\"Take the last letters of the words in 'Lady Gaga' and concatenate them.\", 'ya'),\n",
    "(\"Sammy wanted to go to where the people were. Where might he go?\",None),\n",
    "(\"Is the following sentence plausible? 'Joao Moutinho caught the screen pass in the NFC championship.'\", 'not plausible'),\n",
    "(\"A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?\", \"No\"),\n",
    "('Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?', 9)\n",
    "]\n",
    "\n",
    "line = 2\n",
    "generate(prompts[line-2][0],\n",
    "         system_prompt=\"Write out your reasoning step-by-step to be sure you get the right answers!\",\n",
    "         max_length=512)\n",
    "\n",
    "if prompts[line-2][1]:\n",
    "    print('answer:', prompts[line-2][1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "react_prompt = \"\"\"\\\n",
    "Assistant is a large language model trained by Microsoft.\n",
    "\n",
    "Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n",
    "\n",
    "Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n",
    "\n",
    "Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n",
    "\n",
    "TOOLS:\n",
    "------\n",
    "\n",
    "Assistant has access to the following tools:\n",
    "\n",
    "wikipedia_search - searches the wikipedia database for the answer\\n\n",
    "web_search - searches the web for the answer\\n\n",
    "calculator - calculates the answer to the question\\n\n",
    "weather_api - gets the weather for the location\\n\n",
    "\n",
    "\n",
    "To use a tool, please use the following format:\n",
    "\n",
    "```\n",
    "Thought: Do I need to use a tool? Yes\n",
    "Action: the action to take, should be one of [wikipedia_search, web_search, calculator, weather_api]\n",
    "Action Input: the input to the action\n",
    "Observation: the result of the action\n",
    "```\n",
    "\n",
    "When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:\n",
    "\n",
    "```\n",
    "Thought: Do I need to use a tool? No\n",
    "Final Answer: [your response here]\n",
    "```\n",
    "\n",
    "Begin!\n",
    "\n",
    "\n",
    "New input: {query}\n",
    "\"\"\" #{agent_scratchpad}\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "gen = generate(react_prompt.format(query=\"What is the latest AI news today?\"), max_length=512)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "generate(react_prompt.format(query=\"오늘 날씨 어때?\"), max_length=512)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "generate(\"사과와 귤중 어떤게 더 맛있어?\", max_length=1024)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# ollama"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai\n",
    "from IPython.display import display, Markdown\n",
    "from multimethod import multimethod\n",
    "_ollama = openai.OpenAI(base_url='http://localhost:11434/v1')\n",
    "\n",
    "ollama_model_id = 'phi3.5:3.8b-mini-instruct-q8_0'\n",
    "ollama_model_id = 'jjkim76/phi3.5-fc:Q8_0'\n",
    "\n",
    "def generate(input_text, system_prompt=None, max_length=1024):\n",
    "    if system_prompt is None:\n",
    "        system_prompt = \"\"\"Write out your reasoning step-by-step to be sure you get the right answers!\"\"\"\n",
    "\n",
    "    messages = input_text\n",
    "    if not isinstance(messages, list):\n",
    "        messages = [dict(role=\"system\", content=system_prompt), dict(role=\"user\", content=input_text)]\n",
    "\n",
    "    response = _ollama.chat.completions.create(\n",
    "        model=ollama_model_id,\n",
    "        messages=messages,\n",
    "        temperature = 0.01, top_p = 0.01,\n",
    "        max_tokens=max_length,\n",
    "        # do_sample=True, temperature=0.1, top_k=50,\n",
    "    )\n",
    "    text = response.choices[0].message.content\n",
    "    # print(input_text[-200:]|gray)\n",
    "    # display(Markdown(text))\n",
    "    return text\n",
    "\n",
    "\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "fcv3-2",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}