Upload phi-3.5-mini-fc.ipynb with huggingface_hub
Browse files- phi-3.5-mini-fc.ipynb +837 -0
phi-3.5-mini-fc.ipynb
ADDED
@@ -0,0 +1,837 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"/home/ubuntu/miniforge3/envs/unsloth_env/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
13 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"name": "stdout",
|
18 |
+
"output_type": "stream",
|
19 |
+
"text": [
|
20 |
+
"Token is valid (permission: write).\n",
|
21 |
+
"Your token has been saved in your configured git credential helpers (store).\n",
|
22 |
+
"Your token has been saved to /home/ubuntu/.cache/huggingface/token\n",
|
23 |
+
"Login successful\n"
|
24 |
+
]
|
25 |
+
}
|
26 |
+
],
|
27 |
+
"source": [
|
28 |
+
"%reload_ext autoreload\n",
|
29 |
+
"%autoreload 2\n",
|
30 |
+
"if '__file__' not in globals():\n",
|
31 |
+
" __file__, __name__ = globals()['__vsc_ipynb_file__'], '__ipynb__'\n",
|
32 |
+
" import types, sys; sys.modules['__ipynb__'] = types.ModuleType('__ipynb__')\n",
|
33 |
+
" from IPython.core.magic import register_cell_magic\n",
|
34 |
+
" @register_cell_magic\n",
|
35 |
+
" def skip_if(flag, cell): exec(cell, globals())if flag and not eval(flag) else print('Cell skipped...')\n",
|
36 |
+
"\n",
|
37 |
+
"import sys, os\n",
|
38 |
+
"if os.path.abspath('.') not in sys.path: sys.path.append(os.path.abspath('.'))\n",
|
39 |
+
"\n",
|
40 |
+
"import os, huggingface_hub # !pip install huggingface_hub[hf_transfer]\n",
|
41 |
+
"huggingface_hub.login(token = os.environ.get('HF_TOKEN'), add_to_git_credential=True)\n",
|
42 |
+
"\n",
|
43 |
+
"import inspect\n",
|
44 |
+
"from pathlib import Path\n",
|
45 |
+
"from tqdm import tqdm\n",
|
46 |
+
"from glob import glob\n",
|
47 |
+
"import numpy as np; np.set_printoptions(precision=8, suppress=True); np.random.seed(42)\n",
|
48 |
+
"\n",
|
49 |
+
"class whitechar:\n",
|
50 |
+
" def __ror__(self, x): return x.replace('\\n', '\\\\n\\n').replace('\\t', '\\\\t\\t').replace(' ', 'β΅')\n",
|
51 |
+
"wc = whitechar()\n",
|
52 |
+
"\n",
|
53 |
+
"class text_color:\n",
|
54 |
+
" black,red,green,yellow,blue,magenta,cyan,white,gray = [*range(30,38), 90] # fgclr, [*range(90,98), ''] # light-fgclr\n",
|
55 |
+
" bold, italic, underline, strike = 1, 3, 4, 9 # attrs supported on vscode notebook.\n",
|
56 |
+
" def __init__(self, fg,bg=0,attr=0):\n",
|
57 |
+
" attr = f'{attr};' if attr > 0 else ''\n",
|
58 |
+
" bg = f'{bg+10};' if bg > 0 else ''\n",
|
59 |
+
" self.clr = f'\\33[{attr}{bg}{fg}m'\n",
|
60 |
+
"\n",
|
61 |
+
" def __ror__(self, obj): return self.clr + str(obj) + '\\33[0m'\n",
|
62 |
+
" @staticmethod\n",
|
63 |
+
" def all(): return (text_color(clr) for clr in [*range(30,38), 90])\n",
|
64 |
+
"\n",
|
65 |
+
"black,red,green,yellow,blue,magenta,cyan,white,gray = text_color.all()\n",
|
66 |
+
"\n",
|
67 |
+
"class cout:\n",
|
68 |
+
" def __ror__(self, obj): print(f'[{inspect.stack()[1].lineno}] {str(obj)}')\n",
|
69 |
+
" def __call__(self, *args, **kwds): print(f'[{inspect.stack()[1].lineno+1}]', *args, **kwds)\n",
|
70 |
+
"out = cout()\n",
|
71 |
+
"\n",
|
72 |
+
"\n",
|
73 |
+
"os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' #can help a little with VRAM reqs."
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": null,
|
79 |
+
"metadata": {},
|
80 |
+
"outputs": [],
|
81 |
+
"source": [
|
82 |
+
"import unsloth\n",
|
83 |
+
"import torch\n",
|
84 |
+
"\n",
|
85 |
+
"import wandb\n",
|
86 |
+
"wandb.init(project=\"phi-3.5-mini\", name='run-phi-3.5-mini')\n",
|
87 |
+
"os.environ[\"WANDB_NOTEBOOK_NAME\"] =__file__\n",
|
88 |
+
"\n",
|
89 |
+
"max_seq_length = 4096\n",
|
90 |
+
"use_4bit = False\n",
|
91 |
+
"\n",
|
92 |
+
"model, tokenizer = unsloth.FastLanguageModel.from_pretrained(\n",
|
93 |
+
" model_name=\"microsoft/Phi-3.5-mini-instruct\",\n",
|
94 |
+
" max_seq_length=max_seq_length,\n",
|
95 |
+
" dtype=None, # auto detect\n",
|
96 |
+
" load_in_4bit=use_4bit,\n",
|
97 |
+
")\n",
|
98 |
+
"\n",
|
99 |
+
"model = unsloth.FastLanguageModel.get_peft_model(\n",
|
100 |
+
" model,\n",
|
101 |
+
" r=16,\n",
|
102 |
+
" target_modules=[\n",
|
103 |
+
" \"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
|
104 |
+
" \"gate_proj\", \"up_proj\", \"down_proj\"],\n",
|
105 |
+
" lora_alpha=16,\n",
|
106 |
+
" lora_dropout=0,\n",
|
107 |
+
" bias=\"none\",\n",
|
108 |
+
" use_gradient_checkpointing=\"unsloth\",\n",
|
109 |
+
" random_state=3407,\n",
|
110 |
+
" use_rslora=False, # True\n",
|
111 |
+
" loftq_config=None,\n",
|
112 |
+
")\n"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": null,
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [],
|
120 |
+
"source": [
|
121 |
+
"tokenizer.padding_side = 'left' # right -> left\n",
|
122 |
+
"# tokenizer.add_bos_token = False\n",
|
123 |
+
"# tokenizer.truncation_side # right\n",
|
124 |
+
"tokenizer.special_tokens_map_extended\n",
|
125 |
+
"tokenizer.special_tokens_map\n",
|
126 |
+
"tokenizer.added_tokens_decoder\n",
|
127 |
+
"\n",
|
128 |
+
"tokenizer | out"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": null,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"%%skip_if\n",
|
138 |
+
"tokenizer.apply_chat_template(\n",
|
139 |
+
" [\n",
|
140 |
+
" {\"role\": \"user\", \"content\": \"hello\"},\n",
|
141 |
+
" {\"role\": \"assistant\", \"content\": \"hi\"},\n",
|
142 |
+
" {\"role\": \"user\", \"content\": \"how are you?\"},\n",
|
143 |
+
" ],\n",
|
144 |
+
" tokenize=False,\n",
|
145 |
+
" add_generation_prompt=True,\n",
|
146 |
+
")|wc | out\n"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": null,
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [],
|
154 |
+
"source": [
|
155 |
+
"from datasets import load_dataset\n",
|
156 |
+
"\n",
|
157 |
+
"data_collator = None\n",
|
158 |
+
"ds_xlam_fc = load_dataset('json', data_files={\n",
|
159 |
+
" 'train': 'xlam-dataset-60k-qwen2-train.jsonl',\n",
|
160 |
+
"})\n",
|
161 |
+
"\n",
|
162 |
+
"# sample 3000 datas from ds_xlam_fc\n",
|
163 |
+
"ds_xlam_fc3k = ds_xlam_fc['train'].shuffle(seed=42).select(range(3000))\n",
|
164 |
+
"ds_xlam_fc3k[0]\n"
|
165 |
+
]
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"cell_type": "code",
|
169 |
+
"execution_count": null,
|
170 |
+
"metadata": {},
|
171 |
+
"outputs": [],
|
172 |
+
"source": [
|
173 |
+
"def formatting_prompts_func(examples):\n",
|
174 |
+
" print( 'formatting_prompts_func:', len(examples) )\n",
|
175 |
+
" convos = examples[\"messages\"]\n",
|
176 |
+
" texts = [tokenizer.apply_chat_template(convo, tokenize=False, add_generation_prompt=False) for convo in convos]\n",
|
177 |
+
" return {\"text\": texts}\n",
|
178 |
+
"\n",
|
179 |
+
"dataset_formatted = ds_xlam_fc3k.map(\n",
|
180 |
+
" formatting_prompts_func, batched=True,\n",
|
181 |
+
" remove_columns=[\"messages\", \"type\", \"source\"])\n",
|
182 |
+
"\n",
|
183 |
+
"dataset_formatted[199] | out"
|
184 |
+
]
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"cell_type": "code",
|
188 |
+
"execution_count": null,
|
189 |
+
"metadata": {},
|
190 |
+
"outputs": [],
|
191 |
+
"source": [
|
192 |
+
"import trl\n",
|
193 |
+
"\n",
|
194 |
+
"def print_tokens_with_ids(txt):\n",
|
195 |
+
" tokens = tokenizer.tokenize(txt, add_special_tokens=False)\n",
|
196 |
+
" token_ids = tokenizer.encode(txt, add_special_tokens=False)\n",
|
197 |
+
" return list(zip(tokens, token_ids))\n",
|
198 |
+
"\n",
|
199 |
+
"input_text = tokenizer.apply_chat_template(\n",
|
200 |
+
" [dict(role=\"user\", content=\"\\n111 222\"),\n",
|
201 |
+
" dict(role=\"assistant\", content=\"\\nxxx yyy\\n\"),\n",
|
202 |
+
" dict(role=\"user\", content=\"444 555\\n\"),],\n",
|
203 |
+
" tokenize=False, add_generation_prompt=True)\n",
|
204 |
+
"print_tokens_with_ids(input_text) | out\n",
|
205 |
+
"print_tokens_with_ids(\"\\n<|assistant|>\\n\") | green | out\n",
|
206 |
+
"\n",
|
207 |
+
"\n",
|
208 |
+
"data_collator = trl.DataCollatorForCompletionOnlyLM([32001], tokenizer=tokenizer)\n",
|
209 |
+
"\n"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "code",
|
214 |
+
"execution_count": null,
|
215 |
+
"metadata": {},
|
216 |
+
"outputs": [],
|
217 |
+
"source": [
|
218 |
+
"\n",
|
219 |
+
"import transformers\n",
|
220 |
+
"import unsloth\n",
|
221 |
+
"import trl\n",
|
222 |
+
"\n",
|
223 |
+
"train_args = trl.SFTConfig(\n",
|
224 |
+
" per_device_train_batch_size=8,\n",
|
225 |
+
" gradient_accumulation_steps=1,\n",
|
226 |
+
"\n",
|
227 |
+
" warmup_steps=5,\n",
|
228 |
+
" # max_steps=60,\n",
|
229 |
+
" num_train_epochs = 1,\n",
|
230 |
+
"\n",
|
231 |
+
" # learning_rate=2e-4,\n",
|
232 |
+
" learning_rate = 5e-5,\n",
|
233 |
+
" bf16= unsloth.is_bfloat16_supported(),\n",
|
234 |
+
" optim= \"adamw_torch\", # \"adamw_8bit\",\n",
|
235 |
+
"\n",
|
236 |
+
" weight_decay=0.01,\n",
|
237 |
+
" lr_scheduler_type=\"linear\",\n",
|
238 |
+
" seed=3407,\n",
|
239 |
+
"\n",
|
240 |
+
" gradient_checkpointing = True,\n",
|
241 |
+
" gradient_checkpointing_kwargs = {\"use_reentrant\": True},\n",
|
242 |
+
"\n",
|
243 |
+
" output_dir = \"outputs_unslot\",\n",
|
244 |
+
" run_name = \"phi35-inst\",\n",
|
245 |
+
" logging_steps=1,\n",
|
246 |
+
" report_to= 'wandb',\n",
|
247 |
+
")\n",
|
248 |
+
"\n",
|
249 |
+
"trainer = trl.SFTTrainer(\n",
|
250 |
+
" model=model,\n",
|
251 |
+
" tokenizer=tokenizer,\n",
|
252 |
+
"\n",
|
253 |
+
" train_dataset=dataset_formatted,\n",
|
254 |
+
" dataset_text_field=\"text\",\n",
|
255 |
+
" data_collator=data_collator,\n",
|
256 |
+
" packing=False,\n",
|
257 |
+
"\n",
|
258 |
+
" max_seq_length=max_seq_length,\n",
|
259 |
+
" dataset_num_proc=2,\n",
|
260 |
+
"\n",
|
261 |
+
" args = train_args,\n",
|
262 |
+
")\n"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
+
"metadata": {},
|
269 |
+
"outputs": [],
|
270 |
+
"source": [
|
271 |
+
"\n",
|
272 |
+
"gpu_stats = torch.cuda.get_device_properties(0)\n",
|
273 |
+
"start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
|
274 |
+
"max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n",
|
275 |
+
"print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n",
|
276 |
+
"print(f\"{start_gpu_memory} GB of memory reserved.\")\n",
|
277 |
+
"\n",
|
278 |
+
"trainer_stats = trainer.train()\n",
|
279 |
+
"\n",
|
280 |
+
"used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
|
281 |
+
"used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n",
|
282 |
+
"used_percentage = round(used_memory / max_memory * 100, 3)\n",
|
283 |
+
"lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)\n",
|
284 |
+
"print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n",
|
285 |
+
"print(f\"{round(trainer_stats.metrics['train_runtime'] / 60, 2)} minutes used for training.\")\n",
|
286 |
+
"print(f\"Peak reserved memory = {used_memory} GB.\")\n",
|
287 |
+
"print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n",
|
288 |
+
"print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n",
|
289 |
+
"print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")\n",
|
290 |
+
"\n",
|
291 |
+
"model.save_pretrained_merged('outputs_unslot/model', tokenizer, save_method = \"merged_16bit\",) # for best quality\n",
|
292 |
+
"\n",
|
293 |
+
"import unsloth\n",
|
294 |
+
"unsloth.FastLanguageModel.for_inference(model) # Enable native 2x faster inference"
|
295 |
+
]
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "code",
|
299 |
+
"execution_count": null,
|
300 |
+
"metadata": {},
|
301 |
+
"outputs": [],
|
302 |
+
"source": [
|
303 |
+
"# model.save_pretrained_merged('outputs_unslot/model', tokenizer, save_method = \"merged_16bit\",) # for best quality\n",
|
304 |
+
"model.save_pretrained_merged('outputs_unslot/model/lora', tokenizer, save_method = \"lora\",)\n"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"cell_type": "markdown",
|
309 |
+
"metadata": {},
|
310 |
+
"source": [
|
311 |
+
"# inference"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"cell_type": "markdown",
|
316 |
+
"metadata": {},
|
317 |
+
"source": [
|
318 |
+
"### load weight from saved"
|
319 |
+
]
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"cell_type": "code",
|
323 |
+
"execution_count": null,
|
324 |
+
"metadata": {},
|
325 |
+
"outputs": [],
|
326 |
+
"source": [
|
327 |
+
"import transformers, peft, torch, unsloth\n",
|
328 |
+
"\n",
|
329 |
+
"try:\n",
|
330 |
+
" del model\n",
|
331 |
+
" del tokenizer\n",
|
332 |
+
" torch.cuda.empty_cache()\n",
|
333 |
+
"except:\n",
|
334 |
+
" pass\n",
|
335 |
+
"\n",
|
336 |
+
"if 1: # loading from hf\n",
|
337 |
+
" repo_name = \"objects76/phi-3.5-fc\" # phi-3.5-mini\n",
|
338 |
+
" repo_name = \"outputs_unslot/merged-model\"\n",
|
339 |
+
" model = transformers.AutoModelForCausalLM.from_pretrained(\n",
|
340 |
+
" repo_name, revision=\"main\",\n",
|
341 |
+
" torch_dtype=torch.bfloat16,\n",
|
342 |
+
" device_map=\"auto\",\n",
|
343 |
+
" trust_remote_code=True,\n",
|
344 |
+
" # attn_implementation=\"flash_attention_2\", #turn off if not supported by model or your GPU\n",
|
345 |
+
" )\n",
|
346 |
+
" model.config.use_cache = True\n",
|
347 |
+
" model.eval()\n",
|
348 |
+
"\n",
|
349 |
+
" tokenizer = transformers.AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)\n",
|
350 |
+
"\n",
|
351 |
+
"elif 1:\n",
|
352 |
+
" max_seq_length = 4096\n",
|
353 |
+
" dtype = None\n",
|
354 |
+
" load_in_4bit = True\n",
|
355 |
+
"\n",
|
356 |
+
" # model, tokenizer = unsloth.FastLanguageModel.from_pretrained(\n",
|
357 |
+
" # model_name = \"outputs_unslot/lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
|
358 |
+
" # max_seq_length = max_seq_length,\n",
|
359 |
+
" # dtype = dtype,\n",
|
360 |
+
" # load_in_4bit = load_in_4bit,\n",
|
361 |
+
" # )\n",
|
362 |
+
" # unsloth.FastLanguageModel.for_inference(model)\n",
|
363 |
+
"\n",
|
364 |
+
" # I highly do NOT suggest - use Unsloth if possible\n",
|
365 |
+
" base_model = \"microsoft/Phi-3.5-mini-instruct\"\n",
|
366 |
+
"\n",
|
367 |
+
" model = peft.AutoPeftModelForCausalLM.from_pretrained(\n",
|
368 |
+
" \"outputs_unslot/lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
|
369 |
+
" load_in_4bit = False,\n",
|
370 |
+
" )\n",
|
371 |
+
" tokenizer = transformers.AutoTokenizer.from_pretrained(\"outputs_unslot/lora_model\")\n",
|
372 |
+
" model.config.use_cache = True\n",
|
373 |
+
" model.eval()\n",
|
374 |
+
" print(model.config)\n",
|
375 |
+
"\n",
|
376 |
+
"tokenizer | out\n"
|
377 |
+
]
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"cell_type": "code",
|
381 |
+
"execution_count": null,
|
382 |
+
"metadata": {},
|
383 |
+
"outputs": [],
|
384 |
+
"source": [
|
385 |
+
"import datasets\n",
|
386 |
+
"\n",
|
387 |
+
"ds_test = datasets.load_dataset(\"json\", data_files=\"xlam-dataset-60k-qwen2-test.jsonl\")['train']\n",
|
388 |
+
"ds_test"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"cell_type": "code",
|
393 |
+
"execution_count": null,
|
394 |
+
"metadata": {},
|
395 |
+
"outputs": [],
|
396 |
+
"source": [
|
397 |
+
"import re,json\n",
|
398 |
+
"\n",
|
399 |
+
"def infer(M,T, messages):\n",
|
400 |
+
" input_ids = T.apply_chat_template(\n",
|
401 |
+
" messages,\n",
|
402 |
+
" tokenize=True,\n",
|
403 |
+
" add_generation_prompt=True,\n",
|
404 |
+
" max_length=T.model_max_length,\n",
|
405 |
+
" padding=False,\n",
|
406 |
+
" truncation=True,\n",
|
407 |
+
" return_tensors='pt',\n",
|
408 |
+
" ).to(M.device)\n",
|
409 |
+
"\n",
|
410 |
+
" text_streamer = None # transformers.TextStreamer(tokenizer, skip_prompt = True)\n",
|
411 |
+
" outputs = M.generate(\n",
|
412 |
+
" input_ids = input_ids, # attention_mask=attention_mask,\n",
|
413 |
+
" streamer = text_streamer,\n",
|
414 |
+
" max_new_tokens=1024,\n",
|
415 |
+
" eos_token_id=tokenizer.eos_token_id,\n",
|
416 |
+
" pad_token_id=tokenizer.pad_token_id,\n",
|
417 |
+
" do_sample=True, temperature=0.01, top_p= 0.01,\n",
|
418 |
+
" use_cache=True)\n",
|
419 |
+
"\n",
|
420 |
+
" # gen = T.batch_decode(outputs, skip_special_tokens=True)[0]\n",
|
421 |
+
" gen = T.decode(outputs[0, input_ids.shape[-1]:], skip_special_tokens=True)\n",
|
422 |
+
"\n",
|
423 |
+
" return input_ids, outputs, gen\n",
|
424 |
+
"\n",
|
425 |
+
"\n",
|
426 |
+
"\n",
|
427 |
+
"for i, sample in enumerate(ds_test):\n",
|
428 |
+
" message = sample[\"messages\"]\n",
|
429 |
+
" user_content = message[0][\"content\"]\n",
|
430 |
+
" ans = message[1][\"content\"]\n",
|
431 |
+
" _, _, gen = infer(model, tokenizer, message[:-1])\n",
|
432 |
+
" gen = gen.replace('```json', '').replace('```', '')\n",
|
433 |
+
"\n",
|
434 |
+
" # normalize = lambda s: re.sub(r\"\"\"\\s+\"\"\", \"\", s, flags=re.MULTILINE|re.DOTALL)\n",
|
435 |
+
" # gen = normalize(gen.replace('```json', '').replace('```', ''))\n",
|
436 |
+
" # ans = normalize(ans)\n",
|
437 |
+
" true,false = True,False\n",
|
438 |
+
" gen = json.dumps(eval(gen), indent=3)\n",
|
439 |
+
" ans = json.dumps(eval(ans), indent=3)\n",
|
440 |
+
" if gen != ans:\n",
|
441 |
+
" # print(user_content|gray)\n",
|
442 |
+
" print(f\"{i} ----------------\"|gray)\n",
|
443 |
+
" print('gen:', gen|green)\n",
|
444 |
+
" print('ans:', ans)"
|
445 |
+
]
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"cell_type": "markdown",
|
449 |
+
"metadata": {},
|
450 |
+
"source": [
|
451 |
+
"### no fc"
|
452 |
+
]
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"cell_type": "code",
|
456 |
+
"execution_count": null,
|
457 |
+
"metadata": {},
|
458 |
+
"outputs": [],
|
459 |
+
"source": [
|
460 |
+
"def generate(input_text, system_prompt, max_length=0):\n",
|
461 |
+
" messages = [\n",
|
462 |
+
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
463 |
+
" {\"role\": \"user\", \"content\": input_text}\n",
|
464 |
+
" ]\n",
|
465 |
+
" _, _, prediction = infer(model, tokenizer, messages)\n",
|
466 |
+
" print(input_text|gray)\n",
|
467 |
+
" print(prediction|green)\n"
|
468 |
+
]
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"cell_type": "code",
|
472 |
+
"execution_count": null,
|
473 |
+
"metadata": {},
|
474 |
+
"outputs": [],
|
475 |
+
"source": [
|
476 |
+
"prompts = [\n",
|
477 |
+
"(\"Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?\", 11),\n",
|
478 |
+
"(\"Yes or no: Would a pear sink in water?\",None),\n",
|
479 |
+
"(\"How would you bring me something that isnβt a fruit?\",None),\n",
|
480 |
+
"(\"How many keystrokes are needed to type the numbers from 1 to 500?\", 1392),\n",
|
481 |
+
"(\"The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?\", \"05/23/1943\"),\n",
|
482 |
+
"(\"Take the last letters of the words in 'Lady Gaga' and concatenate them.\", 'ya'),\n",
|
483 |
+
"(\"Sammy wanted to go to where the people were. Where might he go?\",None),\n",
|
484 |
+
"(\"Is the following sentence plausible? 'Joao Moutinho caught the screen pass in the NFC championship.'\", 'not plausible'),\n",
|
485 |
+
"(\"A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?\", \"No\"),\n",
|
486 |
+
"('Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?', 9)\n",
|
487 |
+
"]\n",
|
488 |
+
"\n",
|
489 |
+
"line = 2\n",
|
490 |
+
"generate(prompts[line-2][0],\n",
|
491 |
+
" system_prompt=\"Write out your reasoning step-by-step to be sure you get the right answers!\",\n",
|
492 |
+
" max_length=512)\n",
|
493 |
+
"\n",
|
494 |
+
"if prompts[line-2][1]:\n",
|
495 |
+
" print('answer:', prompts[line-2][1])"
|
496 |
+
]
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"cell_type": "markdown",
|
500 |
+
"metadata": {},
|
501 |
+
"source": [
|
502 |
+
"# Saving weights"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"cell_type": "markdown",
|
507 |
+
"metadata": {},
|
508 |
+
"source": [
|
509 |
+
"### lora"
|
510 |
+
]
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"cell_type": "code",
|
514 |
+
"execution_count": null,
|
515 |
+
"metadata": {},
|
516 |
+
"outputs": [],
|
517 |
+
"source": [
|
518 |
+
"model.save_pretrained(\"outputs_unslot/lora_model\") # Local saving\n",
|
519 |
+
"tokenizer.save_pretrained(\"outputs_unslot/lora_model\")\n",
|
520 |
+
"# model.push_to_hub(\"your_name/lora_model\", token = \"...\") # Online saving\n",
|
521 |
+
"# tokenizer.push_to_hub(\"your_name/lora_model\", token = \"...\") # Online saving\n",
|
522 |
+
"\n",
|
523 |
+
"# loading\n",
|
524 |
+
"# from unsloth import FastLanguageModel\n",
|
525 |
+
"# model, tokenizer = FastLanguageModel.from_pretrained(\n",
|
526 |
+
"# model_name = \"outputs_unslot/lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
|
527 |
+
"# max_seq_length = max_seq_length,\n",
|
528 |
+
"# dtype = dtype,\n",
|
529 |
+
"# load_in_4bit = load_in_4bit,\n",
|
530 |
+
"# )\n",
|
531 |
+
"# FastLanguageModel.for_inference(model)\n"
|
532 |
+
]
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"cell_type": "markdown",
|
536 |
+
"metadata": {},
|
537 |
+
"source": [
|
538 |
+
"### hf-model"
|
539 |
+
]
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"cell_type": "code",
|
543 |
+
"execution_count": null,
|
544 |
+
"metadata": {},
|
545 |
+
"outputs": [],
|
546 |
+
"source": [
|
547 |
+
"# model.save_pretrained_merged(\"outputs_unslot/hf-model\", tokenizer, save_method = \"merged_16bit\",)\n",
|
548 |
+
"# merge with lora model\n",
|
549 |
+
"# model.save_pretrained(\"outputs_unslot/hf-model\") # safe_serialization = None\n",
|
550 |
+
"# tokenizer.save_pretrained(\"outputs_unslot/hf-model\")"
|
551 |
+
]
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"cell_type": "markdown",
|
555 |
+
"metadata": {},
|
556 |
+
"source": [
|
557 |
+
"### gguf\n",
|
558 |
+
"- it will make hf weight(safe tensor)"
|
559 |
+
]
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"cell_type": "code",
|
563 |
+
"execution_count": null,
|
564 |
+
"metadata": {},
|
565 |
+
"outputs": [],
|
566 |
+
"source": [
|
567 |
+
"\n",
|
568 |
+
"model.save_pretrained_gguf(\"outputs_unslot/model\", tokenizer, quantization_method=\"q8_0\")\n",
|
569 |
+
"model.save_pretrained_gguf(\"outputs_unslot/model\", tokenizer, quantization_method=\"q4_k_m\")\n",
|
570 |
+
"model.save_pretrained_gguf(\"outputs_unslot/model\", tokenizer, quantization_method=\"q5_k_m\")\n"
|
571 |
+
]
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"cell_type": "code",
|
575 |
+
"execution_count": null,
|
576 |
+
"metadata": {},
|
577 |
+
"outputs": [],
|
578 |
+
"source": [
|
579 |
+
"\n",
|
580 |
+
"def create_modelfile(gguf_path, template, output_modelfile):\n",
|
581 |
+
" strip_lines = lambda x : '\\n'.join(line.strip() for line in x.splitlines())\n",
|
582 |
+
" assert Path(gguf_path).exists()\n",
|
583 |
+
" output_modelfile = Path(gguf_path).parent / Path(output_modelfile).name\n",
|
584 |
+
" gguf_path = Path(gguf_path).name\n",
|
585 |
+
"\n",
|
586 |
+
" with open(output_modelfile, \"w\") as f:\n",
|
587 |
+
" f.write(f\"FROM {gguf_path}\\n\\n\")\n",
|
588 |
+
" f.write(f\"TEMPLATE \\\"\\\"\\\"{strip_lines(template)}\\\"\\\"\\\"\\n\")\n",
|
589 |
+
" # f.write(strip_lines(\"\"\"\n",
|
590 |
+
" # SYSTEM \"You are a helpful assistant.\"\n",
|
591 |
+
"\n",
|
592 |
+
" # PARAMETER temperature 0.01\n",
|
593 |
+
" # PARAMETER top_p 0.01\n",
|
594 |
+
" # PARAMETER stop \"<|im_end|>\" \"\"\")+'\\n')\n",
|
595 |
+
"\n",
|
596 |
+
"phi_3_5_template = \"\"\"\\\n",
|
597 |
+
"{{ if .System }}<|system|>\n",
|
598 |
+
"{{ .System }}<|end|>\n",
|
599 |
+
"{{ end }}{{ if .Prompt }}<|user|>\n",
|
600 |
+
"{{ .Prompt }}<|end|>\n",
|
601 |
+
"{{ end }}<|assistant|>\n",
|
602 |
+
"{{ .Response }}<|end|>\"\"\"\n",
|
603 |
+
"\n",
|
604 |
+
"create_modelfile(\"outputs_unslot/model/unsloth.Q8_0.gguf\", phi_3_5_template, \"phi3.5-fc-Q8_0.mf\")\n",
|
605 |
+
"\n",
|
606 |
+
"!ollama create jjkim76/phi3.5-fc:Q8_0 -f outputs_unslot/model/phi3.5-fc-Q8_0.mf\n",
|
607 |
+
"!ollama push jjkim76/phi3.5-fc:Q8_0\n"
|
608 |
+
]
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"cell_type": "markdown",
|
612 |
+
"metadata": {},
|
613 |
+
"source": [
|
614 |
+
"### merge with lora"
|
615 |
+
]
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"cell_type": "code",
|
619 |
+
"execution_count": null,
|
620 |
+
"metadata": {},
|
621 |
+
"outputs": [],
|
622 |
+
"source": [
|
623 |
+
"import transformers, peft\n",
|
624 |
+
"\n",
|
625 |
+
"pretrained_path = 'microsoft/Phi-3.5-mini-instruct'\n",
|
626 |
+
"# model_max_length = 4096\n",
|
627 |
+
"\n",
|
628 |
+
"tokenizer = transformers.AutoTokenizer.from_pretrained(\n",
|
629 |
+
" pretrained_path,\n",
|
630 |
+
" # model_max_length=model_max_length,\n",
|
631 |
+
" trust_remote_code=True,\n",
|
632 |
+
" )\n",
|
633 |
+
"\n",
|
634 |
+
"config = transformers.AutoConfig.from_pretrained(\n",
|
635 |
+
" pretrained_path\n",
|
636 |
+
")\n",
|
637 |
+
"\n",
|
638 |
+
"model = transformers.AutoModelForCausalLM.from_pretrained(\n",
|
639 |
+
" pretrained_path,\n",
|
640 |
+
" # config=config,\n",
|
641 |
+
" device_map=\"auto\",\n",
|
642 |
+
" trust_remote_code=True,\n",
|
643 |
+
" torch_dtype=torch.bfloat16,\n",
|
644 |
+
" # use_flash_attention_2=True,\n",
|
645 |
+
")\n",
|
646 |
+
"\n",
|
647 |
+
"lora_path = 'outputs_unslot/model/lora'\n",
|
648 |
+
"lora_model = peft.PeftModel.from_pretrained(model, lora_path, torch_dtype=torch.float16)"
|
649 |
+
]
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"cell_type": "code",
|
653 |
+
"execution_count": null,
|
654 |
+
"metadata": {},
|
655 |
+
"outputs": [],
|
656 |
+
"source": [
|
657 |
+
"merged_model = lora_model.merge_and_unload()\n",
|
658 |
+
"merged_model"
|
659 |
+
]
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"cell_type": "code",
|
663 |
+
"execution_count": null,
|
664 |
+
"metadata": {},
|
665 |
+
"outputs": [],
|
666 |
+
"source": [
|
667 |
+
"# merged_model.save_pretrained('outputs_unslot/merged-model')\n",
|
668 |
+
"tokenizer.save_pretrained('outputs_unslot/merged-model')"
|
669 |
+
]
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"cell_type": "markdown",
|
673 |
+
"metadata": {},
|
674 |
+
"source": [
|
675 |
+
"### upload to hf"
|
676 |
+
]
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"cell_type": "code",
|
680 |
+
"execution_count": 2,
|
681 |
+
"metadata": {},
|
682 |
+
"outputs": [
|
683 |
+
{
|
684 |
+
"name": "stderr",
|
685 |
+
"output_type": "stream",
|
686 |
+
"text": [
|
687 |
+
"Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:02<00:00, 1.18s/it]\n"
|
688 |
+
]
|
689 |
+
}
|
690 |
+
],
|
691 |
+
"source": [
|
692 |
+
"import torch, peft, transformers\n",
|
693 |
+
"\n",
|
694 |
+
"model_local = \"outputs_unslot/merged-model\"\n",
|
695 |
+
"\n",
|
696 |
+
"model = transformers.AutoModelForCausalLM.from_pretrained(\n",
|
697 |
+
" model_local,\n",
|
698 |
+
" device_map=\"auto\",\n",
|
699 |
+
" torch_dtype=torch.bfloat16,\n",
|
700 |
+
" trust_remote_code=True,\n",
|
701 |
+
" low_cpu_mem_usage=True,\n",
|
702 |
+
" attn_implementation=\"flash_attention_2\",\n",
|
703 |
+
")\n",
|
704 |
+
"\n",
|
705 |
+
"model.config.use_cache = True\n",
|
706 |
+
"model.eval()\n",
|
707 |
+
"\n",
|
708 |
+
"tokenizer = transformers.AutoTokenizer.from_pretrained(model_local)"
|
709 |
+
]
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"cell_type": "code",
|
713 |
+
"execution_count": 3,
|
714 |
+
"metadata": {},
|
715 |
+
"outputs": [
|
716 |
+
{
|
717 |
+
"name": "stdout",
|
718 |
+
"output_type": "stream",
|
719 |
+
"text": [
|
720 |
+
"model_id, revision=\"objects76/Phi-3.5-mini-instruct-fc\", \"main\"\n"
|
721 |
+
]
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"name": "stderr",
|
725 |
+
"output_type": "stream",
|
726 |
+
"text": [
|
727 |
+
"tokenizer.model: 100%|ββββββββββ| 500k/500k [00:01<00:00, 463kB/s]\n",
|
728 |
+
"100%|ββββββββββ| 1/1 [00:01<00:00, 1.30s/it]\n",
|
729 |
+
"100%|ββββββββββ| 2/2 [00:15<00:00, 7.94s/it]\n"
|
730 |
+
]
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"data": {
|
734 |
+
"text/plain": [
|
735 |
+
"CommitInfo(commit_url='https://huggingface.co/objects76/Phi-3.5-mini-instruct-fc/commit/8c379468173a1f6b05d39488cb7c61a51eeed72e', commit_message='instruction following added. without system message.', commit_description='', oid='8c379468173a1f6b05d39488cb7c61a51eeed72e', pr_url=None, pr_revision=None, pr_num=None)"
|
736 |
+
]
|
737 |
+
},
|
738 |
+
"execution_count": 3,
|
739 |
+
"metadata": {},
|
740 |
+
"output_type": "execute_result"
|
741 |
+
}
|
742 |
+
],
|
743 |
+
"source": [
|
744 |
+
"from huggingface_hub import HfApi, HfFolder\n",
|
745 |
+
"from datetime import datetime\n",
|
746 |
+
"\n",
|
747 |
+
"tag = 'main' # datetime.now().strftime(\"%m%d\")\n",
|
748 |
+
"repo_name = f\"objects76/Phi-3.5-mini-instruct-fc\"\n",
|
749 |
+
"print(f'model_id, revision=\"{repo_name}\", \"{tag}\"')\n",
|
750 |
+
"\n",
|
751 |
+
"\n",
|
752 |
+
"# Instantiate HfApi to interact with Hugging Face Hub\n",
|
753 |
+
"tokenizer.push_to_hub(repo_name, revision=tag)\n",
|
754 |
+
"model.push_to_hub(repo_name, revision=tag,\n",
|
755 |
+
" max_shard_size=\"5GB\",\n",
|
756 |
+
" # safe_serialization=True, private=True,\n",
|
757 |
+
" commit_message='instruction following added. without system message.')\n",
|
758 |
+
"\n",
|
759 |
+
"#\n",
|
760 |
+
"# upload additional files\n",
|
761 |
+
"#\n",
|
762 |
+
"# srcfiles = 'output_qwen/2024-08-09/source.tar.gz'\n",
|
763 |
+
"# !tar -czvf {srcfiles} alpaca*.jsonl xlam*.jsonl qwen2-xlam-5.py\n"
|
764 |
+
]
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"cell_type": "code",
|
768 |
+
"execution_count": 5,
|
769 |
+
"metadata": {},
|
770 |
+
"outputs": [],
|
771 |
+
"source": [
|
772 |
+
"import json\n",
|
773 |
+
"def build_readme(readme_path, outpath):\n",
|
774 |
+
" # get prompt sample\n",
|
775 |
+
" test_samples = []\n",
|
776 |
+
" with open(\"xlam-dataset-60k-qwen2-test.jsonl\") as fp:\n",
|
777 |
+
" test_samples = [json.loads(line) for line in fp]\n",
|
778 |
+
" messages = test_samples[5]['messages']\n",
|
779 |
+
"\n",
|
780 |
+
" with open(readme_path) as fp:\n",
|
781 |
+
" txt = fp.read()\n",
|
782 |
+
" txt = txt.replace('USERMSG_PLACE_HOLDER', messages[0]['content'].replace('```', '[TRIPLE_BACKTICK]'))\n",
|
783 |
+
" # txt = txt.replace('MESSAGE_PLACE_HOLDER', str(messages[:-1]))\n",
|
784 |
+
" txt = txt.replace('RESPONSE_PLACE_HOLDER', str(messages[-1]['content']))\n",
|
785 |
+
" with open(outpath, 'w') as fp:\n",
|
786 |
+
" fp.write(txt)\n",
|
787 |
+
"\n",
|
788 |
+
"\n",
|
789 |
+
" # tokenizer.apply_chat_template(messages, tokenize=False) | out\n",
|
790 |
+
" # evals = []\n",
|
791 |
+
" # for i, sample in enumerate(test_samples):\n",
|
792 |
+
" # print(f'-- sample {i} --'| magenta)\n",
|
793 |
+
" # evals.append( get_answer(sample['messages'], model, tokenizer) )\n",
|
794 |
+
"\n",
|
795 |
+
"build_readme('outputs_unslot/README_TEMPLATE.md', model_local + '/README.md')\n",
|
796 |
+
"\n",
|
797 |
+
"if 1: # update file\n",
|
798 |
+
" local_files = [\n",
|
799 |
+
" # \"output_qwen/README.md\",\n",
|
800 |
+
" __file__\n",
|
801 |
+
" ]\n",
|
802 |
+
" api = HfApi()\n",
|
803 |
+
" for file_path in local_files:\n",
|
804 |
+
" # target_path = file_path.replace('output_qwen/2024-08-08/', '')\n",
|
805 |
+
" target_path = Path(file_path).name\n",
|
806 |
+
" api.upload_file(\n",
|
807 |
+
" path_or_fileobj= file_path,\n",
|
808 |
+
" path_in_repo= target_path,\n",
|
809 |
+
" repo_id=repo_name, revision=tag,\n",
|
810 |
+
" repo_type=\"model\",\n",
|
811 |
+
" # commit_message=\"Add README.md file\"\n",
|
812 |
+
" )"
|
813 |
+
]
|
814 |
+
}
|
815 |
+
],
|
816 |
+
"metadata": {
|
817 |
+
"kernelspec": {
|
818 |
+
"display_name": "fcv3-2",
|
819 |
+
"language": "python",
|
820 |
+
"name": "python3"
|
821 |
+
},
|
822 |
+
"language_info": {
|
823 |
+
"codemirror_mode": {
|
824 |
+
"name": "ipython",
|
825 |
+
"version": 3
|
826 |
+
},
|
827 |
+
"file_extension": ".py",
|
828 |
+
"mimetype": "text/x-python",
|
829 |
+
"name": "python",
|
830 |
+
"nbconvert_exporter": "python",
|
831 |
+
"pygments_lexer": "ipython3",
|
832 |
+
"version": "3.10.14"
|
833 |
+
}
|
834 |
+
},
|
835 |
+
"nbformat": 4,
|
836 |
+
"nbformat_minor": 2
|
837 |
+
}
|