File size: 3,111 Bytes
4b69beb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: EleutherAI/pythia-410m-deduped-v0
tags:
- generated_from_trainer
model-index:
- name: eleuter-foodie-test-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eleuter-foodie-test-2
This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped-v0](https://huggingface.co/EleutherAI/pythia-410m-deduped-v0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3148
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3434 | 0.06 | 200 | 1.4594 |
| 1.2535 | 0.11 | 400 | 1.4383 |
| 1.2794 | 0.17 | 600 | 1.4265 |
| 1.2913 | 0.22 | 800 | 1.4185 |
| 1.2776 | 0.28 | 1000 | 1.4054 |
| 1.2929 | 0.34 | 1200 | 1.3950 |
| 1.2357 | 0.39 | 1400 | 1.3975 |
| 1.2235 | 0.45 | 1600 | 1.3886 |
| 1.2609 | 0.5 | 1800 | 1.3854 |
| 1.2002 | 0.56 | 2000 | 1.3774 |
| 1.2729 | 0.61 | 2200 | 1.3745 |
| 1.2143 | 0.67 | 2400 | 1.3680 |
| 1.2011 | 0.73 | 2600 | 1.3670 |
| 1.2697 | 0.78 | 2800 | 1.3625 |
| 1.2499 | 0.84 | 3000 | 1.3593 |
| 1.2409 | 0.89 | 3200 | 1.3536 |
| 1.2393 | 0.95 | 3400 | 1.3497 |
| 1.3622 | 1.01 | 3600 | 1.3411 |
| 1.2965 | 1.06 | 3800 | 1.3408 |
| 1.3515 | 1.12 | 4000 | 1.3366 |
| 1.3451 | 1.17 | 4200 | 1.3359 |
| 1.3427 | 1.23 | 4400 | 1.3343 |
| 1.3735 | 1.28 | 4600 | 1.3344 |
| 1.348 | 1.34 | 4800 | 1.3322 |
| 1.3536 | 1.4 | 5000 | 1.3315 |
| 1.284 | 1.45 | 5200 | 1.3281 |
| 1.2912 | 1.51 | 5400 | 1.3272 |
| 1.3119 | 1.56 | 5600 | 1.3261 |
| 1.3422 | 1.62 | 5800 | 1.3221 |
| 1.3139 | 1.68 | 6000 | 1.3201 |
| 1.3222 | 1.73 | 6200 | 1.3181 |
| 1.3038 | 1.79 | 6400 | 1.3181 |
| 1.296 | 1.84 | 6600 | 1.3169 |
| 1.3562 | 1.9 | 6800 | 1.3166 |
| 1.2887 | 1.95 | 7000 | 1.3148 |
### Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|