File size: 1,771 Bytes
dfaef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ec07ef
dfaef7d
 
 
 
 
 
 
 
 
4ec07ef
 
 
dfaef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ec07ef
dfaef7d
 
 
 
4ec07ef
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: cc-by-4.0
tags:
- generated_from_trainer
datasets:
- wmt16
metrics:
- bleu
model-index:
- name: opus-mt-tc-big-en-tr-finetuned-en-to-tr
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: wmt16
      type: wmt16
      config: tr-en
      split: validation
      args: tr-en
    metrics:
    - name: Bleu
      type: bleu
      value: 19.8042
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# opus-mt-tc-big-en-tr-finetuned-en-to-tr

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-big-en-tr](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-tr) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6132
- Bleu: 19.8042
- Gen Len: 23.0739

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.9813        | 1.0   | 12860 | 1.6132          | 19.8042 | 23.0739 |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3