--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-tc-big-en-tr-finetuned-en-to-tr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 config: tr-en split: validation args: tr-en metrics: - name: Bleu type: bleu value: 19.8227 --- # opus-mt-tc-big-en-tr-finetuned-en-to-tr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-big-en-tr](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-tr) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.6141 - Bleu: 19.8227 - Gen Len: 23.0539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.981 | 1.0 | 12860 | 1.6141 | 19.8227 | 23.0539 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2