--- library_name: transformers language: - yo - en - ig license: apache-2.0 base_model: ccibeekeoc42/whisper-small-yoruba-07-17 tags: - generated_from_trainer model-index: - name: whisper-small-multilingual-naija-10-25-2024 results: [] --- # whisper-small-multilingual-naija-10-25-2024 This model is a fine-tuned version of [ccibeekeoc42/whisper-small-yoruba-07-17](https://huggingface.co/ccibeekeoc42/whisper-small-yoruba-07-17) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9909 | 0.0229 | 100 | 1.5086 | | 1.6658 | 0.0457 | 200 | 1.1909 | | 1.421 | 0.0686 | 300 | 1.0778 | | 1.3603 | 0.0914 | 400 | 1.0138 | | 1.3567 | 0.1143 | 500 | 0.9721 | | 1.2484 | 0.1372 | 600 | 0.9448 | | 1.1076 | 0.1600 | 700 | 0.9270 | | 1.0729 | 0.1829 | 800 | 0.9088 | | 1.042 | 0.2058 | 900 | 0.8900 | | 1.0528 | 0.2286 | 1000 | 0.8817 | | 1.0261 | 0.2515 | 1100 | 0.8674 | | 0.9289 | 0.2743 | 1200 | 0.8631 | | 0.959 | 0.2972 | 1300 | 0.8460 | | 0.9355 | 0.3201 | 1400 | 0.8436 | | 0.9855 | 0.3429 | 1500 | 0.8351 | | 0.9426 | 0.3658 | 1600 | 0.8291 | | 0.8913 | 0.3887 | 1700 | 0.8233 | | 0.9202 | 0.4115 | 1800 | 0.8180 | | 0.9122 | 0.4344 | 1900 | 0.8131 | | 0.8454 | 0.4572 | 2000 | 0.8104 | | 0.8048 | 0.4801 | 2100 | 0.8074 | | 0.8824 | 0.5030 | 2200 | 0.8006 | | 0.8707 | 0.5258 | 2300 | 0.7965 | | 0.8955 | 0.5487 | 2400 | 0.7941 | | 0.8237 | 0.5716 | 2500 | 0.7940 | | 0.8774 | 0.5944 | 2600 | 0.7921 | | 0.8162 | 0.6173 | 2700 | 0.7836 | | 0.8308 | 0.6401 | 2800 | 0.7829 | | 0.7863 | 0.6630 | 2900 | 0.7786 | | 0.7536 | 0.6859 | 3000 | 0.7744 | | 0.8215 | 0.7087 | 3100 | 0.7730 | | 0.7852 | 0.7316 | 3200 | 0.7709 | | 0.7569 | 0.7545 | 3300 | 0.7699 | | 0.7298 | 0.7773 | 3400 | 0.7685 | | 0.7777 | 0.8002 | 3500 | 0.7659 | | 0.7358 | 0.8230 | 3600 | 0.7637 | | 0.7258 | 0.8459 | 3700 | 0.7611 | | 0.7674 | 0.8688 | 3800 | 0.7604 | | 0.8048 | 0.8916 | 3900 | 0.7599 | | 0.7694 | 0.9145 | 4000 | 0.7590 | | 0.8072 | 0.9374 | 4100 | 0.7577 | | 0.7765 | 0.9602 | 4200 | 0.7580 | | 0.7789 | 0.9831 | 4300 | 0.7577 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.0.1+cu118 - Datasets 3.0.2 - Tokenizers 0.20.1