topher217 commited on
Commit
f24e364
·
1 Parent(s): db4f363

wip modelcard

Browse files
Files changed (2) hide show
  1. README.md +29 -17
  2. modelcard_generate.py +40 -5
README.md CHANGED
@@ -19,12 +19,12 @@ license: mit
19
  A finetune of Yolo5 intended for identifying beach trash.
20
 
21
  - **Developed by:** Jeffrey Queisser, Christopher Buckley
22
- - **Funded by [optional]:** [More Information Needed]
23
  - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
  - **Language(s) (NLP):** en
26
- - **License:** mit
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
 
29
  ### Model Sources [optional]
30
 
@@ -80,7 +80,7 @@ Use the code below to get started with the model.
80
 
81
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
 
83
- [More Information Needed]
84
 
85
  ### Training Procedure
86
 
@@ -88,12 +88,17 @@ Use the code below to get started with the model.
88
 
89
  #### Preprocessing [optional]
90
 
91
- [More Information Needed]
 
 
 
92
 
93
 
94
  #### Training Hyperparameters
95
 
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
97
 
98
  #### Speeds, Sizes, Times [optional]
99
 
@@ -111,7 +116,7 @@ Use the code below to get started with the model.
111
 
112
  <!-- This should link to a Dataset Card if possible. -->
113
 
114
- [More Information Needed]
115
 
116
  #### Factors
117
 
@@ -123,15 +128,22 @@ Use the code below to get started with the model.
123
 
124
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
 
126
- [More Information Needed]
 
 
 
127
 
128
  ### Results
129
 
130
- [More Information Needed]
 
 
131
 
132
  #### Summary
133
 
134
 
 
 
135
 
136
  ## Model Examination [optional]
137
 
@@ -145,11 +157,11 @@ Use the code below to get started with the model.
145
 
146
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
 
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
 
154
  ## Technical Specifications [optional]
155
 
@@ -193,8 +205,8 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
193
 
194
  ## Model Card Authors [optional]
195
 
196
- [More Information Needed]
197
 
198
  ## Model Card Contact
199
 
200
- [More Information Needed]
 
19
  A finetune of Yolo5 intended for identifying beach trash.
20
 
21
  - **Developed by:** Jeffrey Queisser, Christopher Buckley
22
+ - **Funded by [optional]:** Okinawa Institute of Science and Technology COI Next Grant
23
  - **Shared by [optional]:** [More Information Needed]
24
+ - **Model type:** Yolo5
25
  - **Language(s) (NLP):** en
26
+ - **License:** CC BY-NC 4.0
27
+ - **Finetuned from model [optional]:** Yolo5
28
 
29
  ### Model Sources [optional]
30
 
 
80
 
81
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
 
83
+ https://universe.roboflow.com/okinawaaibeachrobot/beach-cleaning-object-detection/dataset/1
84
 
85
  ### Training Procedure
86
 
 
88
 
89
  #### Preprocessing [optional]
90
 
91
+
92
+ {'preprocessing': {'auto-orient': True, 'resize': {'width': 1280, 'height': 800, 'format': 'Fill (with center crop) in'}}}
93
+ See https://docs.roboflow.com/api-reference/versions/create-a-project-version for more information
94
+
95
 
96
 
97
  #### Training Hyperparameters
98
 
99
+ - **Training regime:**
100
+ TODO populate with any hyperparameters
101
+ <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
 
103
  #### Speeds, Sizes, Times [optional]
104
 
 
116
 
117
  <!-- This should link to a Dataset Card if possible. -->
118
 
119
+ https://universe.roboflow.com/okinawaaibeachrobot/beach-cleaning-object-detection/dataset/1/images?split=test
120
 
121
  #### Factors
122
 
 
128
 
129
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
 
131
+
132
+ TODO populate with any metrics
133
+ e.g. loss function
134
+
135
 
136
  ### Results
137
 
138
+
139
+ TODO populate with any results
140
+
141
 
142
  #### Summary
143
 
144
 
145
+ TODO
146
+
147
 
148
  ## Model Examination [optional]
149
 
 
157
 
158
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
159
 
160
+ - **Hardware Type:** TODO
161
+ - **Hours used:** TODO
162
+ - **Cloud Provider:** TODO
163
+ - **Compute Region:** TODO
164
+ - **Carbon Emitted:** TODO
165
 
166
  ## Technical Specifications [optional]
167
 
 
205
 
206
  ## Model Card Authors [optional]
207
 
208
+ Christopher Buckley
209
 
210
  ## Model Card Contact
211
 
212
+ https://github.com/okinawa-ai-beach-robot/home/discussions
modelcard_generate.py CHANGED
@@ -1,12 +1,47 @@
1
  from huggingface_hub import ModelCard, ModelCardData
2
 
3
- card_data = ModelCardData(language='en', license='mit', library_name='keras')
 
4
  card = ModelCard.from_template(
5
  card_data,
6
- model_id='yolo5_beachbot_160',
7
  model_description="A finetune of Yolo5 intended for identifying beach trash.",
8
  developers="Jeffrey Queisser, Christopher Buckley",
9
- repo="https://github.com/okinawa-ai-beach-robot/yolo5_beachbot_160"
10
- )
11
- card.save('README.md')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  print(card)
 
1
  from huggingface_hub import ModelCard, ModelCardData
2
 
3
+ card_data = ModelCardData(language="en", license="mit", library_name="keras")
4
+ # See all possible fields at https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md
5
  card = ModelCard.from_template(
6
  card_data,
 
7
  model_description="A finetune of Yolo5 intended for identifying beach trash.",
8
  developers="Jeffrey Queisser, Christopher Buckley",
9
+ funded_by="Okinawa Institute of Science and Technology COI Next Grant",
10
+ model_type="Yolo5",
11
+ license="CC BY-NC 4.0",
12
+ base_model="Yolo5",
13
+ repo="https://github.com/okinawa-ai-beach-robot/yolo5_beachbot_160",
14
+ model_id="yolo5_beachbot_160",
15
+ training_data="https://universe.roboflow.com/okinawaaibeachrobot/beach-cleaning-object-detection/dataset/1",
16
+ preprocessing="""
17
+ {'preprocessing': {'auto-orient': True, 'resize': {'width': 1280, 'height': 800, 'format': 'Fill (with center crop) in'}}}
18
+ See https://docs.roboflow.com/api-reference/versions/create-a-project-version for more information
19
+ """,
20
+ training_regime="""
21
+ TODO populate with any hyperparameters
22
+ """,
23
+ testing_data="https://universe.roboflow.com/okinawaaibeachrobot/beach-cleaning-object-detection/dataset/1/images?split=test",
24
+ factors="""
25
+ Note the dataset is small and test set can have quite similar images to the train set.
26
+ This was an early vesion of the dataset so results are not reliable",
27
+ """,
28
+ testing_metrics="""
29
+ TODO populate with any metrics
30
+ e.g. loss function
31
+ """,
32
+ results="""
33
+ TODO populate with any results
34
+ """,
35
+ results_summary="""
36
+ TODO
37
+ """,
38
+ hardware_type="TODO",
39
+ hours_used="TODO",
40
+ cloud_provider="TODO",
41
+ cloud_region="TODO",
42
+ co2_emitted="TODO",
43
+ model_card_authors="Christopher Buckley",
44
+ model_card_contact="https://github.com/okinawa-ai-beach-robot/home/discussions"
45
+ )
46
+ card.save("README.md")
47
  print(card)