wip modelcard
Browse files- README.md +29 -17
- modelcard_generate.py +40 -5
README.md
CHANGED
@@ -19,12 +19,12 @@ license: mit
|
|
19 |
A finetune of Yolo5 intended for identifying beach trash.
|
20 |
|
21 |
- **Developed by:** Jeffrey Queisser, Christopher Buckley
|
22 |
-
- **Funded by [optional]:**
|
23 |
- **Shared by [optional]:** [More Information Needed]
|
24 |
-
- **Model type:**
|
25 |
- **Language(s) (NLP):** en
|
26 |
-
- **License:**
|
27 |
-
- **Finetuned from model [optional]:**
|
28 |
|
29 |
### Model Sources [optional]
|
30 |
|
@@ -80,7 +80,7 @@ Use the code below to get started with the model.
|
|
80 |
|
81 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
82 |
|
83 |
-
|
84 |
|
85 |
### Training Procedure
|
86 |
|
@@ -88,12 +88,17 @@ Use the code below to get started with the model.
|
|
88 |
|
89 |
#### Preprocessing [optional]
|
90 |
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
#### Training Hyperparameters
|
95 |
|
96 |
-
- **Training regime:**
|
|
|
|
|
97 |
|
98 |
#### Speeds, Sizes, Times [optional]
|
99 |
|
@@ -111,7 +116,7 @@ Use the code below to get started with the model.
|
|
111 |
|
112 |
<!-- This should link to a Dataset Card if possible. -->
|
113 |
|
114 |
-
|
115 |
|
116 |
#### Factors
|
117 |
|
@@ -123,15 +128,22 @@ Use the code below to get started with the model.
|
|
123 |
|
124 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
125 |
|
126 |
-
|
|
|
|
|
|
|
127 |
|
128 |
### Results
|
129 |
|
130 |
-
|
|
|
|
|
131 |
|
132 |
#### Summary
|
133 |
|
134 |
|
|
|
|
|
135 |
|
136 |
## Model Examination [optional]
|
137 |
|
@@ -145,11 +157,11 @@ Use the code below to get started with the model.
|
|
145 |
|
146 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
147 |
|
148 |
-
- **Hardware Type:**
|
149 |
-
- **Hours used:**
|
150 |
-
- **Cloud Provider:**
|
151 |
-
- **Compute Region:**
|
152 |
-
- **Carbon Emitted:**
|
153 |
|
154 |
## Technical Specifications [optional]
|
155 |
|
@@ -193,8 +205,8 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
193 |
|
194 |
## Model Card Authors [optional]
|
195 |
|
196 |
-
|
197 |
|
198 |
## Model Card Contact
|
199 |
|
200 |
-
|
|
|
19 |
A finetune of Yolo5 intended for identifying beach trash.
|
20 |
|
21 |
- **Developed by:** Jeffrey Queisser, Christopher Buckley
|
22 |
+
- **Funded by [optional]:** Okinawa Institute of Science and Technology COI Next Grant
|
23 |
- **Shared by [optional]:** [More Information Needed]
|
24 |
+
- **Model type:** Yolo5
|
25 |
- **Language(s) (NLP):** en
|
26 |
+
- **License:** CC BY-NC 4.0
|
27 |
+
- **Finetuned from model [optional]:** Yolo5
|
28 |
|
29 |
### Model Sources [optional]
|
30 |
|
|
|
80 |
|
81 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
82 |
|
83 |
+
https://universe.roboflow.com/okinawaaibeachrobot/beach-cleaning-object-detection/dataset/1
|
84 |
|
85 |
### Training Procedure
|
86 |
|
|
|
88 |
|
89 |
#### Preprocessing [optional]
|
90 |
|
91 |
+
|
92 |
+
{'preprocessing': {'auto-orient': True, 'resize': {'width': 1280, 'height': 800, 'format': 'Fill (with center crop) in'}}}
|
93 |
+
See https://docs.roboflow.com/api-reference/versions/create-a-project-version for more information
|
94 |
+
|
95 |
|
96 |
|
97 |
#### Training Hyperparameters
|
98 |
|
99 |
+
- **Training regime:**
|
100 |
+
TODO populate with any hyperparameters
|
101 |
+
<!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
102 |
|
103 |
#### Speeds, Sizes, Times [optional]
|
104 |
|
|
|
116 |
|
117 |
<!-- This should link to a Dataset Card if possible. -->
|
118 |
|
119 |
+
https://universe.roboflow.com/okinawaaibeachrobot/beach-cleaning-object-detection/dataset/1/images?split=test
|
120 |
|
121 |
#### Factors
|
122 |
|
|
|
128 |
|
129 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
130 |
|
131 |
+
|
132 |
+
TODO populate with any metrics
|
133 |
+
e.g. loss function
|
134 |
+
|
135 |
|
136 |
### Results
|
137 |
|
138 |
+
|
139 |
+
TODO populate with any results
|
140 |
+
|
141 |
|
142 |
#### Summary
|
143 |
|
144 |
|
145 |
+
TODO
|
146 |
+
|
147 |
|
148 |
## Model Examination [optional]
|
149 |
|
|
|
157 |
|
158 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
159 |
|
160 |
+
- **Hardware Type:** TODO
|
161 |
+
- **Hours used:** TODO
|
162 |
+
- **Cloud Provider:** TODO
|
163 |
+
- **Compute Region:** TODO
|
164 |
+
- **Carbon Emitted:** TODO
|
165 |
|
166 |
## Technical Specifications [optional]
|
167 |
|
|
|
205 |
|
206 |
## Model Card Authors [optional]
|
207 |
|
208 |
+
Christopher Buckley
|
209 |
|
210 |
## Model Card Contact
|
211 |
|
212 |
+
https://github.com/okinawa-ai-beach-robot/home/discussions
|
modelcard_generate.py
CHANGED
@@ -1,12 +1,47 @@
|
|
1 |
from huggingface_hub import ModelCard, ModelCardData
|
2 |
|
3 |
-
card_data = ModelCardData(language=
|
|
|
4 |
card = ModelCard.from_template(
|
5 |
card_data,
|
6 |
-
model_id='yolo5_beachbot_160',
|
7 |
model_description="A finetune of Yolo5 intended for identifying beach trash.",
|
8 |
developers="Jeffrey Queisser, Christopher Buckley",
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
print(card)
|
|
|
1 |
from huggingface_hub import ModelCard, ModelCardData
|
2 |
|
3 |
+
card_data = ModelCardData(language="en", license="mit", library_name="keras")
|
4 |
+
# See all possible fields at https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md
|
5 |
card = ModelCard.from_template(
|
6 |
card_data,
|
|
|
7 |
model_description="A finetune of Yolo5 intended for identifying beach trash.",
|
8 |
developers="Jeffrey Queisser, Christopher Buckley",
|
9 |
+
funded_by="Okinawa Institute of Science and Technology COI Next Grant",
|
10 |
+
model_type="Yolo5",
|
11 |
+
license="CC BY-NC 4.0",
|
12 |
+
base_model="Yolo5",
|
13 |
+
repo="https://github.com/okinawa-ai-beach-robot/yolo5_beachbot_160",
|
14 |
+
model_id="yolo5_beachbot_160",
|
15 |
+
training_data="https://universe.roboflow.com/okinawaaibeachrobot/beach-cleaning-object-detection/dataset/1",
|
16 |
+
preprocessing="""
|
17 |
+
{'preprocessing': {'auto-orient': True, 'resize': {'width': 1280, 'height': 800, 'format': 'Fill (with center crop) in'}}}
|
18 |
+
See https://docs.roboflow.com/api-reference/versions/create-a-project-version for more information
|
19 |
+
""",
|
20 |
+
training_regime="""
|
21 |
+
TODO populate with any hyperparameters
|
22 |
+
""",
|
23 |
+
testing_data="https://universe.roboflow.com/okinawaaibeachrobot/beach-cleaning-object-detection/dataset/1/images?split=test",
|
24 |
+
factors="""
|
25 |
+
Note the dataset is small and test set can have quite similar images to the train set.
|
26 |
+
This was an early vesion of the dataset so results are not reliable",
|
27 |
+
""",
|
28 |
+
testing_metrics="""
|
29 |
+
TODO populate with any metrics
|
30 |
+
e.g. loss function
|
31 |
+
""",
|
32 |
+
results="""
|
33 |
+
TODO populate with any results
|
34 |
+
""",
|
35 |
+
results_summary="""
|
36 |
+
TODO
|
37 |
+
""",
|
38 |
+
hardware_type="TODO",
|
39 |
+
hours_used="TODO",
|
40 |
+
cloud_provider="TODO",
|
41 |
+
cloud_region="TODO",
|
42 |
+
co2_emitted="TODO",
|
43 |
+
model_card_authors="Christopher Buckley",
|
44 |
+
model_card_contact="https://github.com/okinawa-ai-beach-robot/home/discussions"
|
45 |
+
)
|
46 |
+
card.save("README.md")
|
47 |
print(card)
|