--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-base-spelling-de results: [] widget: - text: "das idst ein neuZr test" example_title: "1" --- # bart-base-spelling-de This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1065 - Cer: 0.2022 ## Model description This is a proof of concept spelling correction model for german. ## Intended uses & limitations This is work in progress, be aware that the model can produce artifacts. You can test the model using the pipeline interface: ```python from transformers import pipeline fix_spelling = pipeline("text2text-generation",model="oliverguhr/spelling-correction-german-base") print(fix_spelling("das idst ein neuZr test",max_length=2048)) ``` ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2803 | 0.11 | 1000 | 0.1978 | 0.9429 | | 0.1688 | 0.21 | 2000 | 0.1472 | 0.9426 | | 0.121 | 0.32 | 3000 | 0.1381 | 0.9424 | | 0.1722 | 0.43 | 4000 | 0.1340 | 0.9425 | | 0.1502 | 0.54 | 5000 | 0.1292 | 0.9423 | | 0.1556 | 0.64 | 6000 | 0.1260 | 0.9424 | | 0.1624 | 0.75 | 7000 | 0.1246 | 0.9425 | | 0.1337 | 0.86 | 8000 | 0.1213 | 0.9424 | | 0.131 | 0.96 | 9000 | 0.1195 | 0.9423 | | 0.1137 | 1.07 | 10000 | 0.1178 | 0.9424 | | 0.0958 | 1.18 | 11000 | 0.1166 | 0.9422 | | 0.1067 | 1.28 | 12000 | 0.1147 | 0.9422 | | 0.1201 | 1.39 | 13000 | 0.1135 | 0.9423 | | 0.1115 | 1.5 | 14000 | 0.1111 | 0.9423 | | 0.1284 | 1.61 | 15000 | 0.1101 | 0.9422 | | 0.0947 | 1.71 | 16000 | 0.1085 | 0.9422 | | 0.1081 | 1.82 | 17000 | 0.1073 | 0.9422 | | 0.099 | 1.93 | 18000 | 0.1065 | 0.9422 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1