Tristan commited on
Commit
60a5822
·
1 Parent(s): 44ad8d7

Initial README. Not quite finalized yet.

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - exbert
5
+
6
+ ---
7
+
8
+
9
+ # GPT-2
10
+
11
+ This is a more up-to-date version of the original GPT2, which is a pretrained model on English language using a causal language modeling (CLM) objective.
12
+
13
+ ## Intended uses & limitations
14
+
15
+ You can use the raw model for text generation or fine-tune it to a downstream task. See the
16
+
17
+ ## How to use
18
+
19
+ You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
20
+ set a seed for reproducibility:
21
+
22
+ ```python
23
+ >>> from transformers import pipeline, set_seed
24
+ >>> generator = pipeline('text-generation', model='olm/olm-gpt2-oct-2022')
25
+ >>> set_seed(42)
26
+ >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)
27
+ ```
28
+
29
+ Here is how to use this model to get the features of a given text in PyTorch:
30
+
31
+ ```python
32
+ from transformers import AutoTokenizer, AutoModelForCausalLM
33
+ tokenizer = AutoTokenizer.from_pretrained('olm/olm-gpt2-oct-2022')
34
+ model = AutoModelForCausalLM.from_pretrained('gpt2')
35
+ text = "Replace me by any text you'd like."
36
+ encoded_input = tokenizer(text, return_tensors='pt')
37
+ output = model(**encoded_input)
38
+ ```
39
+
40
+ ## Dataset
41
+
42
+ The model and tokenizer were trained with this [October 2022 cleaned Common Crawl dataset](https://huggingface.co/datasets/olm/olm-CC-MAIN-2022-40-sampling-ratio-0.15894621295) plus this [October 2022 cleaned Wikipedia dataset](https://huggingface.co/datasets/olm/olm-wikipedia-20221001).
43
+ The tokenized version of these concatenated datasets is [here](https://huggingface.co/datasets/olm/olm-october-2022-tokenized-1024).
44
+ The datasets were created with this [repo](https://github.com/huggingface/olm-datasets).
45
+
46
+ ## Training
47
+
48
+ The model was trained according to the GPT2 instructions at this [repo](https://github.com/huggingface/olm-training).
49
+
50
+ ## Evaluation results
51
+
52
+ The model achieves the following results without any fine-tuning (zero-shot):
53
+
54
+ | Task | Metric | Original GPT2 | OLM GPT2 (Ours) | Significance of difference |
55
+ | | | | | (two-tailed p-value) |
56
+ |:-----------:|:----------:|:-------------------:|:---------------------:|:--------------------------:|
57
+ |rte |acc |0.5307 |0.5415 |0.7188 |
58
+ |piqa |acc/acc_norm|0.6289/0.6251 |**0.6638**/**0.6670** |**0.0020**/**0.0002** |
59
+ |copa |acc |0.6400 |0.6900 |0.3000 |
60
+ |record |f1/em |**0.7094**/**0.7026**|0.6874/0.6810 |**0.0000**/**0.0000** |
61
+ |boolq |acc |0.4872 |**0.5606** |**0.0000** |
62
+ |cb |acc/f1 |0.4101/0.2619 |0.3571/0.1754 |0.4193/NA |
63
+ |hellaswag |acc/acc_norm|0.2892/0.3114 |**0.3076**/**0.3491** |**0.0000**/**0.0000** |
64
+ |mrpc |acc/f1 |0.5662/0.6911 |**0.6495**/**0.7741** |**0.0007**/**0.0002** |
65
+ |multirc |acc |0.0189 |0.0115 |0.0959 |
66
+ |lambada |ppl/acc |40.0554/0.3256 |**28.6733**/**0.3625** |**0.0000**/**0.0000** |
67
+ |wsc |acc |0.4327 |0.3654 |0.1679 |
68
+ |wic |acc |0.4922 |0.5 |0.6924 |
69
+ |mnli |acc |0.3372 |**0.3471** |**0.0384** |
70
+ |qnli |acc |0.5017 |0.4981 |0.5884 |
71
+ |cola |mcc |0.0126 |0.0181 |0.8614 |
72
+ |triviaqa |acc |0.0151 |**0.0182** |**0.0048** |
73
+ |winogrande |acc |0.5162 |0.5114 |0.7360 |
74
+ |webqs |acc |0.0030 |**0.0108** |**0.0000** |
75
+ |arc_easy |acc/acc_norm|0.4381/0.3948 |**0.4651**/**0.4247** |**0.0082**/**0.0029** |
76
+ |arc_challenge|acc/acc_norm|0.1903/0.2270 |0.1997/0.2329 |0.4132/0.6256 |
77
+
78
+ To get these results, we used the Eleuther AI evaluation harness [here](https://github.com/EleutherAI/lm-evaluation-harness)
79
+ The harness can produce results a little different than those reported in the GPT2 paper.
80
+ The p-values come from the stderr from the evaluation harness, plus a normal distribution assumption.