Tristan commited on
Commit
6e3f6b4
·
1 Parent(s): 1371256

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -23
README.md CHANGED
@@ -65,34 +65,34 @@ The datasets were created with this [repo](https://github.com/huggingface/olm-da
65
 
66
  ## Training
67
 
68
- The model was trained according to the GPT2 instructions at this [repo](https://github.com/huggingface/olm-training).
69
 
70
  ## Evaluation results
71
 
72
  The model achieves the following results without any fine-tuning (zero-shot):
73
 
74
- | Task | Metric | Original GPT2 | OLM GPT2 (Ours) | Significance (two-tailed p-value) |
75
- |:------------|:-----------|--------------------:|----------------------:|----------------------------------:|
76
- |rte |acc |0.5307 |0.5415 |0.7188 |
77
- |piqa |acc/acc_norm|0.6289/0.6251 |**0.6638**/**0.6670** |**0.0020**/**0.0002** |
78
- |copa |acc |0.6400 |0.6900 |0.3000 |
79
- |record |f1/em |**0.7094**/**0.7026**|0.6874/0.6810 |**0.0000**/**0.0000** |
80
- |boolq |acc |0.4872 |**0.5606** |**0.0000** |
81
- |cb |acc/f1 |0.4101/0.2619 |0.3571/0.1754 |0.4193/NA |
82
- |hellaswag |acc/acc_norm|0.2892/0.3114 |**0.3076**/**0.3491** |**0.0000**/**0.0000** |
83
- |mrpc |acc/f1 |0.5662/0.6911 |**0.6495**/**0.7741** |**0.0007**/**0.0002** |
84
- |multirc |acc |0.0189 |0.0115 |0.0959 |
85
- |lambada |ppl/acc |40.0554/0.3256 |**28.6733**/**0.3625** |**0.0000**/**0.0000** |
86
- |wsc |acc |0.4327 |0.3654 |0.1679 |
87
- |wic |acc |0.4922 |0.5 |0.6924 |
88
- |mnli |acc |0.3372 |**0.3471** |**0.0384** |
89
- |qnli |acc |0.5017 |0.4981 |0.5884 |
90
- |cola |mcc |0.0126 |0.0181 |0.8614 |
91
- |triviaqa |acc |0.0151 |**0.0182** |**0.0048** |
92
- |winogrande |acc |0.5162 |0.5114 |0.7360 |
93
- |webqs |acc |0.0030 |**0.0108** |**0.0000** |
94
- |arc_easy |acc/acc_norm|0.4381/0.3948 |**0.4651**/**0.4247** |**0.0082**/**0.0029** |
95
- |arc_challenge|acc/acc_norm|0.1903/0.2270 |0.1997/0.2329 |0.4132/0.6256 |
96
 
97
  To get these results, we used the Eleuther AI evaluation harness [here](https://github.com/EleutherAI/lm-evaluation-harness).\
98
  The harness can produce results a little different than those reported in the GPT2 paper.\
 
65
 
66
  ## Training
67
 
68
+ The model was trained according to the OLM GPT2 instructions at this [repo](https://github.com/huggingface/olm-training).
69
 
70
  ## Evaluation results
71
 
72
  The model achieves the following results without any fine-tuning (zero-shot):
73
 
74
+ | Task | Metric | Original GPT2 | OLM GPT2 Oct 2022 (Ours) | Significance (two-tailed p-value) |
75
+ |:------------|:-----------|--------------------:|-------------------------:|----------------------------------:|
76
+ |rte |acc |0.5307 |0.5415 |0.7188 |
77
+ |piqa |acc/acc_norm|0.6289/0.6251 |**0.6638**/**0.6670** |**0.0020**/**0.0002** |
78
+ |copa |acc |0.6400 |0.6900 |0.3000 |
79
+ |record |f1/em |**0.7094**/**0.7026**|0.6874/0.6810 |**0.0000**/**0.0000** |
80
+ |boolq |acc |0.4872 |**0.5606** |**0.0000** |
81
+ |cb |acc/f1 |0.4101/0.2619 |0.3571/0.1754 |0.4193/NA |
82
+ |hellaswag |acc/acc_norm|0.2892/0.3114 |**0.3076**/**0.3491** |**0.0000**/**0.0000** |
83
+ |mrpc |acc/f1 |0.5662/0.6911 |**0.6495**/**0.7741** |**0.0007**/**0.0002** |
84
+ |multirc |acc |0.0189 |0.0115 |0.0959 |
85
+ |lambada |ppl/acc |40.0554/0.3256 |**28.6733**/**0.3625** |**0.0000**/**0.0000** |
86
+ |wsc |acc |0.4327 |0.3654 |0.1679 |
87
+ |wic |acc |0.4922 |0.5 |0.6924 |
88
+ |mnli |acc |0.3372 |**0.3471** |**0.0384** |
89
+ |qnli |acc |0.5017 |0.4981 |0.5884 |
90
+ |cola |mcc |0.0126 |0.0181 |0.8614 |
91
+ |triviaqa |acc |0.0151 |**0.0182** |**0.0048** |
92
+ |winogrande |acc |0.5162 |0.5114 |0.7360 |
93
+ |webqs |acc |0.0030 |**0.0108** |**0.0000** |
94
+ |arc_easy |acc/acc_norm|0.4381/0.3948 |**0.4651**/**0.4247** |**0.0082**/**0.0029** |
95
+ |arc_challenge|acc/acc_norm|0.1903/0.2270 |0.1997/0.2329 |0.4132/0.6256 |
96
 
97
  To get these results, we used the Eleuther AI evaluation harness [here](https://github.com/EleutherAI/lm-evaluation-harness).\
98
  The harness can produce results a little different than those reported in the GPT2 paper.\