add model
Browse files- config.json +23 -0
- pytorch_model.bin +3 -0
- structformer.py +1014 -0
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"TransformerModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "structformer.TransformerConfig",
|
7 |
+
"AutoModelForMaskedLM": "structformer.TransformerModel"
|
8 |
+
},
|
9 |
+
"dropatt": 0.1,
|
10 |
+
"dropout": 0.1,
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 512,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"model_type": "transformer",
|
15 |
+
"nhead": 8,
|
16 |
+
"nlayers": 8,
|
17 |
+
"ntokens": 16000,
|
18 |
+
"pad": 1,
|
19 |
+
"pos_emb": true,
|
20 |
+
"relative_bias": false,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.18.0"
|
23 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f295cf6b736aeee12757ea7ecc1c32ead791a33adf69b46f60969f6cd0b87a2
|
3 |
+
size 134778679
|
structformer.py
ADDED
@@ -0,0 +1,1014 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Google Research Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""StructFormer and transformer model."""
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from torch.nn import init
|
22 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
23 |
+
from transformers.modeling_outputs import MaskedLMOutput, SequenceClassifierOutput
|
24 |
+
|
25 |
+
def _get_activation_fn(activation):
|
26 |
+
"""Get specified activation function."""
|
27 |
+
if activation == "relu":
|
28 |
+
return nn.ReLU()
|
29 |
+
elif activation == "gelu":
|
30 |
+
return nn.GELU()
|
31 |
+
elif activation == "leakyrelu":
|
32 |
+
return nn.LeakyReLU()
|
33 |
+
|
34 |
+
raise RuntimeError(
|
35 |
+
"activation should be relu/gelu, not {}".format(activation))
|
36 |
+
|
37 |
+
|
38 |
+
class Conv1d(nn.Module):
|
39 |
+
"""1D convolution layer."""
|
40 |
+
|
41 |
+
def __init__(self, hidden_size, kernel_size, dilation=1):
|
42 |
+
"""Initialization.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
hidden_size: dimension of input embeddings
|
46 |
+
kernel_size: convolution kernel size
|
47 |
+
dilation: the spacing between the kernel points
|
48 |
+
"""
|
49 |
+
super(Conv1d, self).__init__()
|
50 |
+
|
51 |
+
if kernel_size % 2 == 0:
|
52 |
+
padding = (kernel_size // 2) * dilation
|
53 |
+
self.shift = True
|
54 |
+
else:
|
55 |
+
padding = ((kernel_size - 1) // 2) * dilation
|
56 |
+
self.shift = False
|
57 |
+
self.conv = nn.Conv1d(
|
58 |
+
hidden_size,
|
59 |
+
hidden_size,
|
60 |
+
kernel_size,
|
61 |
+
padding=padding,
|
62 |
+
dilation=dilation)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
"""Compute convolution.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
x: input embeddings
|
69 |
+
Returns:
|
70 |
+
conv_output: convolution results
|
71 |
+
"""
|
72 |
+
|
73 |
+
if self.shift:
|
74 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)[:, 1:]
|
75 |
+
else:
|
76 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)
|
77 |
+
|
78 |
+
|
79 |
+
class MultiheadAttention(nn.Module):
|
80 |
+
"""Multi-head self-attention layer."""
|
81 |
+
|
82 |
+
def __init__(self,
|
83 |
+
embed_dim,
|
84 |
+
num_heads,
|
85 |
+
dropout=0.,
|
86 |
+
bias=True,
|
87 |
+
v_proj=True,
|
88 |
+
out_proj=True,
|
89 |
+
relative_bias=True):
|
90 |
+
"""Initialization.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
embed_dim: dimension of input embeddings
|
94 |
+
num_heads: number of self-attention heads
|
95 |
+
dropout: dropout rate
|
96 |
+
bias: bool, indicate whether include bias for linear transformations
|
97 |
+
v_proj: bool, indicate whether project inputs to new values
|
98 |
+
out_proj: bool, indicate whether project outputs to new values
|
99 |
+
relative_bias: bool, indicate whether use a relative position based
|
100 |
+
attention bias
|
101 |
+
"""
|
102 |
+
|
103 |
+
super(MultiheadAttention, self).__init__()
|
104 |
+
self.embed_dim = embed_dim
|
105 |
+
|
106 |
+
self.num_heads = num_heads
|
107 |
+
self.drop = nn.Dropout(dropout)
|
108 |
+
self.head_dim = embed_dim // num_heads
|
109 |
+
assert self.head_dim * num_heads == self.embed_dim, ("embed_dim must be "
|
110 |
+
"divisible by "
|
111 |
+
"num_heads")
|
112 |
+
|
113 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
114 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
115 |
+
if v_proj:
|
116 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
117 |
+
else:
|
118 |
+
self.v_proj = nn.Identity()
|
119 |
+
|
120 |
+
if out_proj:
|
121 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
122 |
+
else:
|
123 |
+
self.out_proj = nn.Identity()
|
124 |
+
|
125 |
+
if relative_bias:
|
126 |
+
self.relative_bias = nn.Parameter(torch.zeros((self.num_heads, 512)))
|
127 |
+
else:
|
128 |
+
self.relative_bias = None
|
129 |
+
|
130 |
+
self._reset_parameters()
|
131 |
+
|
132 |
+
def _reset_parameters(self):
|
133 |
+
"""Initialize attention parameters."""
|
134 |
+
|
135 |
+
init.xavier_uniform_(self.q_proj.weight)
|
136 |
+
init.constant_(self.q_proj.bias, 0.)
|
137 |
+
|
138 |
+
init.xavier_uniform_(self.k_proj.weight)
|
139 |
+
init.constant_(self.k_proj.bias, 0.)
|
140 |
+
|
141 |
+
if isinstance(self.v_proj, nn.Linear):
|
142 |
+
init.xavier_uniform_(self.v_proj.weight)
|
143 |
+
init.constant_(self.v_proj.bias, 0.)
|
144 |
+
|
145 |
+
if isinstance(self.out_proj, nn.Linear):
|
146 |
+
init.xavier_uniform_(self.out_proj.weight)
|
147 |
+
init.constant_(self.out_proj.bias, 0.)
|
148 |
+
|
149 |
+
def forward(self, query, key_padding_mask=None, attn_mask=None):
|
150 |
+
"""Compute multi-head self-attention.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
query: input embeddings
|
154 |
+
key_padding_mask: 3D mask that prevents attention to certain positions
|
155 |
+
attn_mask: 3D mask that rescale the attention weight at each position
|
156 |
+
Returns:
|
157 |
+
attn_output: self-attention output
|
158 |
+
"""
|
159 |
+
|
160 |
+
length, bsz, embed_dim = query.size()
|
161 |
+
assert embed_dim == self.embed_dim
|
162 |
+
|
163 |
+
head_dim = embed_dim // self.num_heads
|
164 |
+
assert head_dim * self.num_heads == embed_dim, ("embed_dim must be "
|
165 |
+
"divisible by num_heads")
|
166 |
+
scaling = float(head_dim)**-0.5
|
167 |
+
|
168 |
+
q = self.q_proj(query)
|
169 |
+
k = self.k_proj(query)
|
170 |
+
v = self.v_proj(query)
|
171 |
+
|
172 |
+
q = q * scaling
|
173 |
+
|
174 |
+
if attn_mask is not None:
|
175 |
+
assert list(attn_mask.size()) == [bsz * self.num_heads,
|
176 |
+
query.size(0), query.size(0)]
|
177 |
+
|
178 |
+
q = q.contiguous().view(length, bsz * self.num_heads,
|
179 |
+
head_dim).transpose(0, 1)
|
180 |
+
k = k.contiguous().view(length, bsz * self.num_heads,
|
181 |
+
head_dim).transpose(0, 1)
|
182 |
+
v = v.contiguous().view(length, bsz * self.num_heads,
|
183 |
+
head_dim).transpose(0, 1)
|
184 |
+
|
185 |
+
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
|
186 |
+
assert list(
|
187 |
+
attn_output_weights.size()) == [bsz * self.num_heads, length, length]
|
188 |
+
|
189 |
+
if self.relative_bias is not None:
|
190 |
+
pos = torch.arange(length, device=query.device)
|
191 |
+
relative_pos = torch.abs(pos[:, None] - pos[None, :]) + 256
|
192 |
+
relative_pos = relative_pos[None, :, :].expand(bsz * self.num_heads, -1,
|
193 |
+
-1)
|
194 |
+
|
195 |
+
relative_bias = self.relative_bias.repeat_interleave(bsz, dim=0)
|
196 |
+
relative_bias = relative_bias[:, None, :].expand(-1, length, -1)
|
197 |
+
relative_bias = torch.gather(relative_bias, 2, relative_pos)
|
198 |
+
attn_output_weights = attn_output_weights + relative_bias
|
199 |
+
|
200 |
+
if key_padding_mask is not None:
|
201 |
+
attn_output_weights = attn_output_weights + key_padding_mask
|
202 |
+
|
203 |
+
if attn_mask is None:
|
204 |
+
attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
|
205 |
+
else:
|
206 |
+
attn_output_weights = torch.sigmoid(attn_output_weights) * attn_mask
|
207 |
+
|
208 |
+
attn_output_weights = self.drop(attn_output_weights)
|
209 |
+
|
210 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
211 |
+
|
212 |
+
assert list(attn_output.size()) == [bsz * self.num_heads, length, head_dim]
|
213 |
+
attn_output = attn_output.transpose(0, 1).contiguous().view(
|
214 |
+
length, bsz, embed_dim)
|
215 |
+
attn_output = self.out_proj(attn_output)
|
216 |
+
|
217 |
+
return attn_output
|
218 |
+
|
219 |
+
|
220 |
+
class TransformerLayer(nn.Module):
|
221 |
+
"""TransformerEncoderLayer is made up of self-attn and feedforward network."""
|
222 |
+
|
223 |
+
def __init__(self,
|
224 |
+
d_model,
|
225 |
+
nhead,
|
226 |
+
dim_feedforward=2048,
|
227 |
+
dropout=0.1,
|
228 |
+
dropatt=0.1,
|
229 |
+
activation="leakyrelu",
|
230 |
+
relative_bias=True):
|
231 |
+
"""Initialization.
|
232 |
+
|
233 |
+
Args:
|
234 |
+
d_model: dimension of inputs
|
235 |
+
nhead: number of self-attention heads
|
236 |
+
dim_feedforward: dimension of hidden layer in feedforward layer
|
237 |
+
dropout: dropout rate
|
238 |
+
dropatt: drop attention rate
|
239 |
+
activation: activation function
|
240 |
+
relative_bias: bool, indicate whether use a relative position based
|
241 |
+
attention bias
|
242 |
+
"""
|
243 |
+
|
244 |
+
super(TransformerLayer, self).__init__()
|
245 |
+
self.self_attn = MultiheadAttention(
|
246 |
+
d_model, nhead, dropout=dropatt, relative_bias=relative_bias)
|
247 |
+
# Implementation of Feedforward model
|
248 |
+
self.feedforward = nn.Sequential(
|
249 |
+
nn.LayerNorm(d_model), nn.Linear(d_model, dim_feedforward),
|
250 |
+
_get_activation_fn(activation), nn.Dropout(dropout),
|
251 |
+
nn.Linear(dim_feedforward, d_model))
|
252 |
+
|
253 |
+
self.norm = nn.LayerNorm(d_model)
|
254 |
+
self.dropout1 = nn.Dropout(dropout)
|
255 |
+
self.dropout2 = nn.Dropout(dropout)
|
256 |
+
|
257 |
+
self.nhead = nhead
|
258 |
+
|
259 |
+
def forward(self, src, attn_mask=None, key_padding_mask=None):
|
260 |
+
"""Pass the input through the encoder layer.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
src: the sequence to the encoder layer (required).
|
264 |
+
attn_mask: the mask for the src sequence (optional).
|
265 |
+
key_padding_mask: the mask for the src keys per batch (optional).
|
266 |
+
Returns:
|
267 |
+
src3: the output of transformer layer, share the same shape as src.
|
268 |
+
"""
|
269 |
+
src2 = self.self_attn(
|
270 |
+
self.norm(src), attn_mask=attn_mask, key_padding_mask=key_padding_mask)
|
271 |
+
src2 = src + self.dropout1(src2)
|
272 |
+
src3 = self.feedforward(src2)
|
273 |
+
src3 = src2 + self.dropout2(src3)
|
274 |
+
|
275 |
+
return src3
|
276 |
+
|
277 |
+
|
278 |
+
def cumprod(x, reverse=False, exclusive=False):
|
279 |
+
"""cumulative product."""
|
280 |
+
if reverse:
|
281 |
+
x = x.flip([-1])
|
282 |
+
|
283 |
+
if exclusive:
|
284 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=1)
|
285 |
+
|
286 |
+
cx = x.cumprod(-1)
|
287 |
+
|
288 |
+
if reverse:
|
289 |
+
cx = cx.flip([-1])
|
290 |
+
return cx
|
291 |
+
|
292 |
+
def cumsum(x, reverse=False, exclusive=False):
|
293 |
+
"""cumulative sum."""
|
294 |
+
bsz, _, length = x.size()
|
295 |
+
device = x.device
|
296 |
+
if reverse:
|
297 |
+
if exclusive:
|
298 |
+
w = torch.ones([bsz, length, length], device=device).tril(-1)
|
299 |
+
else:
|
300 |
+
w = torch.ones([bsz, length, length], device=device).tril(0)
|
301 |
+
cx = torch.bmm(x, w)
|
302 |
+
else:
|
303 |
+
if exclusive:
|
304 |
+
w = torch.ones([bsz, length, length], device=device).triu(1)
|
305 |
+
else:
|
306 |
+
w = torch.ones([bsz, length, length], device=device).triu(0)
|
307 |
+
cx = torch.bmm(x, w)
|
308 |
+
return cx
|
309 |
+
|
310 |
+
def cummin(x, reverse=False, exclusive=False, max_value=1e9):
|
311 |
+
"""cumulative min."""
|
312 |
+
if reverse:
|
313 |
+
if exclusive:
|
314 |
+
x = F.pad(x[:, :, 1:], (0, 1), value=max_value)
|
315 |
+
x = x.flip([-1]).cummin(-1)[0].flip([-1])
|
316 |
+
else:
|
317 |
+
if exclusive:
|
318 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=max_value)
|
319 |
+
x = x.cummin(-1)[0]
|
320 |
+
return x
|
321 |
+
|
322 |
+
class Transformer(nn.Module):
|
323 |
+
"""Transformer model."""
|
324 |
+
|
325 |
+
def __init__(self,
|
326 |
+
hidden_size,
|
327 |
+
nlayers,
|
328 |
+
ntokens,
|
329 |
+
nhead=8,
|
330 |
+
dropout=0.1,
|
331 |
+
dropatt=0.1,
|
332 |
+
relative_bias=True,
|
333 |
+
pos_emb=False,
|
334 |
+
pad=0):
|
335 |
+
"""Initialization.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
hidden_size: dimension of inputs and hidden states
|
339 |
+
nlayers: number of layers
|
340 |
+
ntokens: number of output categories
|
341 |
+
nhead: number of self-attention heads
|
342 |
+
dropout: dropout rate
|
343 |
+
dropatt: drop attention rate
|
344 |
+
relative_bias: bool, indicate whether use a relative position based
|
345 |
+
attention bias
|
346 |
+
pos_emb: bool, indicate whether use a learnable positional embedding
|
347 |
+
pad: pad token index
|
348 |
+
"""
|
349 |
+
|
350 |
+
super(Transformer, self).__init__()
|
351 |
+
|
352 |
+
self.drop = nn.Dropout(dropout)
|
353 |
+
|
354 |
+
self.emb = nn.Embedding(ntokens, hidden_size)
|
355 |
+
if pos_emb:
|
356 |
+
self.pos_emb = nn.Embedding(500, hidden_size)
|
357 |
+
|
358 |
+
self.layers = nn.ModuleList([
|
359 |
+
TransformerLayer(hidden_size, nhead, hidden_size * 4, dropout,
|
360 |
+
dropatt=dropatt, relative_bias=relative_bias)
|
361 |
+
for _ in range(nlayers)])
|
362 |
+
|
363 |
+
self.norm = nn.LayerNorm(hidden_size)
|
364 |
+
|
365 |
+
self.output_layer = nn.Linear(hidden_size, ntokens)
|
366 |
+
self.output_layer.weight = self.emb.weight
|
367 |
+
|
368 |
+
self.init_weights()
|
369 |
+
|
370 |
+
self.nlayers = nlayers
|
371 |
+
self.nhead = nhead
|
372 |
+
self.ntokens = ntokens
|
373 |
+
self.hidden_size = hidden_size
|
374 |
+
self.pad = pad
|
375 |
+
|
376 |
+
def init_weights(self):
|
377 |
+
"""Initialize token embedding and output bias."""
|
378 |
+
initrange = 0.1
|
379 |
+
self.emb.weight.data.uniform_(-initrange, initrange)
|
380 |
+
if hasattr(self, 'pos_emb'):
|
381 |
+
self.pos_emb.weight.data.uniform_(-initrange, initrange)
|
382 |
+
self.output_layer.bias.data.fill_(0)
|
383 |
+
|
384 |
+
def visibility(self, x, device):
|
385 |
+
"""Mask pad tokens."""
|
386 |
+
visibility = (x != self.pad).float()
|
387 |
+
visibility = visibility[:, None, :].expand(-1, x.size(1), -1)
|
388 |
+
visibility = torch.repeat_interleave(visibility, self.nhead, dim=0)
|
389 |
+
return visibility.log()
|
390 |
+
|
391 |
+
def encode(self, x, pos):
|
392 |
+
"""Standard transformer encode process."""
|
393 |
+
h = self.emb(x)
|
394 |
+
if hasattr(self, 'pos_emb'):
|
395 |
+
h = h + self.pos_emb(pos)
|
396 |
+
h_list = []
|
397 |
+
visibility = self.visibility(x, x.device)
|
398 |
+
|
399 |
+
for i in range(self.nlayers):
|
400 |
+
h_list.append(h)
|
401 |
+
h = self.layers[i](
|
402 |
+
h.transpose(0, 1), key_padding_mask=visibility).transpose(0, 1)
|
403 |
+
|
404 |
+
output = h
|
405 |
+
h_array = torch.stack(h_list, dim=2)
|
406 |
+
|
407 |
+
return output, h_array
|
408 |
+
|
409 |
+
def forward(self, x, pos):
|
410 |
+
"""Pass the input through the encoder layer.
|
411 |
+
|
412 |
+
Args:
|
413 |
+
x: input tokens (required).
|
414 |
+
pos: position for each token (optional).
|
415 |
+
Returns:
|
416 |
+
output: probability distributions for missing tokens.
|
417 |
+
state_dict: parsing results and raw output
|
418 |
+
"""
|
419 |
+
|
420 |
+
batch_size, length = x.size()
|
421 |
+
|
422 |
+
raw_output, _ = self.encode(x, pos)
|
423 |
+
raw_output = self.norm(raw_output)
|
424 |
+
raw_output = self.drop(raw_output)
|
425 |
+
|
426 |
+
output = self.output_layer(raw_output)
|
427 |
+
return output.view(batch_size * length, -1), {'raw_output': raw_output,}
|
428 |
+
|
429 |
+
class StructFormer(Transformer):
|
430 |
+
"""StructFormer model."""
|
431 |
+
|
432 |
+
def __init__(self,
|
433 |
+
hidden_size,
|
434 |
+
nlayers,
|
435 |
+
ntokens,
|
436 |
+
nhead=8,
|
437 |
+
dropout=0.1,
|
438 |
+
dropatt=0.1,
|
439 |
+
relative_bias=False,
|
440 |
+
pos_emb=False,
|
441 |
+
pad=0,
|
442 |
+
n_parser_layers=4,
|
443 |
+
conv_size=9,
|
444 |
+
relations=('head', 'child'),
|
445 |
+
weight_act='softmax'):
|
446 |
+
"""Initialization.
|
447 |
+
|
448 |
+
Args:
|
449 |
+
hidden_size: dimension of inputs and hidden states
|
450 |
+
nlayers: number of layers
|
451 |
+
ntokens: number of output categories
|
452 |
+
nhead: number of self-attention heads
|
453 |
+
dropout: dropout rate
|
454 |
+
dropatt: drop attention rate
|
455 |
+
relative_bias: bool, indicate whether use a relative position based
|
456 |
+
attention bias
|
457 |
+
pos_emb: bool, indicate whether use a learnable positional embedding
|
458 |
+
pad: pad token index
|
459 |
+
n_parser_layers: number of parsing layers
|
460 |
+
conv_size: convolution kernel size for parser
|
461 |
+
relations: relations that are used to compute self attention
|
462 |
+
weight_act: relations distribution activation function
|
463 |
+
"""
|
464 |
+
|
465 |
+
super(StructFormer, self).__init__(
|
466 |
+
hidden_size,
|
467 |
+
nlayers,
|
468 |
+
ntokens,
|
469 |
+
nhead=nhead,
|
470 |
+
dropout=dropout,
|
471 |
+
dropatt=dropatt,
|
472 |
+
relative_bias=relative_bias,
|
473 |
+
pos_emb=pos_emb,
|
474 |
+
pad=pad)
|
475 |
+
|
476 |
+
self.parser_layers = nn.ModuleList([
|
477 |
+
nn.Sequential(Conv1d(hidden_size, conv_size),
|
478 |
+
nn.LayerNorm(hidden_size, elementwise_affine=False),
|
479 |
+
nn.Tanh()) for i in range(n_parser_layers)])
|
480 |
+
|
481 |
+
self.distance_ff = nn.Sequential(
|
482 |
+
Conv1d(hidden_size, 2),
|
483 |
+
nn.LayerNorm(hidden_size, elementwise_affine=False), nn.Tanh(),
|
484 |
+
nn.Linear(hidden_size, 1))
|
485 |
+
|
486 |
+
self.height_ff = nn.Sequential(
|
487 |
+
nn.Linear(hidden_size, hidden_size),
|
488 |
+
nn.LayerNorm(hidden_size, elementwise_affine=False), nn.Tanh(),
|
489 |
+
nn.Linear(hidden_size, 1))
|
490 |
+
|
491 |
+
n_rel = len(relations)
|
492 |
+
self._rel_weight = nn.Parameter(torch.zeros((nlayers, nhead, n_rel)))
|
493 |
+
self._rel_weight.data.normal_(0, 0.1)
|
494 |
+
|
495 |
+
self._scaler = nn.Parameter(torch.zeros(2))
|
496 |
+
|
497 |
+
self.n_parse_layers = n_parser_layers
|
498 |
+
self.weight_act = weight_act
|
499 |
+
self.relations = relations
|
500 |
+
|
501 |
+
@property
|
502 |
+
def scaler(self):
|
503 |
+
return self._scaler.exp()
|
504 |
+
|
505 |
+
@property
|
506 |
+
def rel_weight(self):
|
507 |
+
if self.weight_act == 'sigmoid':
|
508 |
+
return torch.sigmoid(self._rel_weight)
|
509 |
+
elif self.weight_act == 'softmax':
|
510 |
+
return torch.softmax(self._rel_weight, dim=-1)
|
511 |
+
|
512 |
+
def parse(self, x, pos):
|
513 |
+
"""Parse input sentence.
|
514 |
+
|
515 |
+
Args:
|
516 |
+
x: input tokens (required).
|
517 |
+
pos: position for each token (optional).
|
518 |
+
Returns:
|
519 |
+
distance: syntactic distance
|
520 |
+
height: syntactic height
|
521 |
+
"""
|
522 |
+
|
523 |
+
mask = (x != self.pad)
|
524 |
+
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
|
525 |
+
|
526 |
+
h = self.emb(x)
|
527 |
+
for i in range(self.n_parse_layers):
|
528 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
529 |
+
h = self.parser_layers[i](h)
|
530 |
+
|
531 |
+
height = self.height_ff(h).squeeze(-1)
|
532 |
+
height.masked_fill_(~mask, -1e9)
|
533 |
+
|
534 |
+
distance = self.distance_ff(h).squeeze(-1)
|
535 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
536 |
+
|
537 |
+
# Calbrating the distance and height to the same level
|
538 |
+
length = distance.size(1)
|
539 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
540 |
+
height_max = torch.cummax(
|
541 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9,
|
542 |
+
dim=-1)[0].triu(0)
|
543 |
+
|
544 |
+
margin_left = torch.relu(
|
545 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max)
|
546 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
547 |
+
margin = torch.where(margin_left > margin_right, margin_right,
|
548 |
+
margin_left).triu(0)
|
549 |
+
|
550 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
551 |
+
margin.masked_fill_(~margin_mask, 0)
|
552 |
+
margin = margin.max()
|
553 |
+
|
554 |
+
distance = distance - margin
|
555 |
+
|
556 |
+
return distance, height
|
557 |
+
|
558 |
+
def compute_block(self, distance, height):
|
559 |
+
"""Compute constituents from distance and height."""
|
560 |
+
|
561 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
|
562 |
+
|
563 |
+
gamma = torch.sigmoid(-beta_logits)
|
564 |
+
ones = torch.ones_like(gamma)
|
565 |
+
|
566 |
+
block_mask_left = cummin(
|
567 |
+
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1)
|
568 |
+
block_mask_left = block_mask_left - F.pad(
|
569 |
+
block_mask_left[:, :, :-1], (1, 0), value=0)
|
570 |
+
block_mask_left.tril_(0)
|
571 |
+
|
572 |
+
block_mask_right = cummin(
|
573 |
+
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1)
|
574 |
+
block_mask_right = block_mask_right - F.pad(
|
575 |
+
block_mask_right[:, :, 1:], (0, 1), value=0)
|
576 |
+
block_mask_right.triu_(0)
|
577 |
+
|
578 |
+
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
|
579 |
+
block = cumsum(block_mask_left).tril(0) + cumsum(
|
580 |
+
block_mask_right, reverse=True).triu(1)
|
581 |
+
|
582 |
+
return block_p, block
|
583 |
+
|
584 |
+
def compute_head(self, height):
|
585 |
+
"""Estimate head for each constituent."""
|
586 |
+
|
587 |
+
_, length = height.size()
|
588 |
+
head_logits = height * self.scaler[1]
|
589 |
+
index = torch.arange(length, device=height.device)
|
590 |
+
|
591 |
+
mask = (index[:, None, None] <= index[None, None, :]) * (
|
592 |
+
index[None, None, :] <= index[None, :, None])
|
593 |
+
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
|
594 |
+
head_logits.masked_fill_(~mask[None, :, :, :], -1e9)
|
595 |
+
|
596 |
+
head_p = torch.softmax(head_logits, dim=-1)
|
597 |
+
|
598 |
+
return head_p
|
599 |
+
|
600 |
+
def generate_mask(self, x, distance, height):
|
601 |
+
"""Compute head and cibling distribution for each token."""
|
602 |
+
|
603 |
+
bsz, length = x.size()
|
604 |
+
|
605 |
+
eye = torch.eye(length, device=x.device, dtype=torch.bool)
|
606 |
+
eye = eye[None, :, :].expand((bsz, -1, -1))
|
607 |
+
|
608 |
+
block_p, block = self.compute_block(distance, height)
|
609 |
+
head_p = self.compute_head(height)
|
610 |
+
head = torch.einsum('blij,bijh->blh', block_p, head_p)
|
611 |
+
head = head.masked_fill(eye, 0)
|
612 |
+
child = head.transpose(1, 2)
|
613 |
+
cibling = torch.bmm(head, child).masked_fill(eye, 0)
|
614 |
+
|
615 |
+
rel_list = []
|
616 |
+
if 'head' in self.relations:
|
617 |
+
rel_list.append(head)
|
618 |
+
if 'child' in self.relations:
|
619 |
+
rel_list.append(child)
|
620 |
+
if 'cibling' in self.relations:
|
621 |
+
rel_list.append(cibling)
|
622 |
+
|
623 |
+
rel = torch.stack(rel_list, dim=1)
|
624 |
+
|
625 |
+
rel_weight = self.rel_weight
|
626 |
+
|
627 |
+
dep = torch.einsum('lhr,brij->lbhij', rel_weight, rel)
|
628 |
+
att_mask = dep.reshape(self.nlayers, bsz * self.nhead, length, length)
|
629 |
+
|
630 |
+
return att_mask, cibling, head, block
|
631 |
+
|
632 |
+
def encode(self, x, pos, att_mask):
|
633 |
+
"""Structformer encoding process."""
|
634 |
+
|
635 |
+
visibility = self.visibility(x, x.device)
|
636 |
+
h = self.emb(x)
|
637 |
+
if hasattr(self, 'pos_emb'):
|
638 |
+
assert pos.max() < 500
|
639 |
+
h = h + self.pos_emb(pos)
|
640 |
+
for i in range(self.nlayers):
|
641 |
+
h = self.layers[i](
|
642 |
+
h.transpose(0, 1), attn_mask=att_mask[i],
|
643 |
+
key_padding_mask=visibility).transpose(0, 1)
|
644 |
+
return h
|
645 |
+
|
646 |
+
def forward(self, x, pos):
|
647 |
+
"""Pass the input through the encoder layer.
|
648 |
+
|
649 |
+
Args:
|
650 |
+
x: input tokens (required).
|
651 |
+
pos: position for each token (optional).
|
652 |
+
Returns:
|
653 |
+
output: probability distributions for missing tokens.
|
654 |
+
state_dict: parsing results and raw output
|
655 |
+
"""
|
656 |
+
|
657 |
+
batch_size, length = x.size()
|
658 |
+
|
659 |
+
distance, height = self.parse(x, pos)
|
660 |
+
att_mask, cibling, head, block = self.generate_mask(x, distance, height)
|
661 |
+
|
662 |
+
raw_output = self.encode(x, pos, att_mask)
|
663 |
+
raw_output = self.norm(raw_output)
|
664 |
+
raw_output = self.drop(raw_output)
|
665 |
+
|
666 |
+
output = self.output_layer(raw_output)
|
667 |
+
|
668 |
+
return output.view(batch_size * length, -1), \
|
669 |
+
{'raw_output': raw_output, 'distance': distance, 'height': height,
|
670 |
+
'cibling': cibling, 'head': head, 'block': block}
|
671 |
+
|
672 |
+
|
673 |
+
##########################################
|
674 |
+
# Clasication Head For BabyLM Evaluation Tasks
|
675 |
+
##########################################
|
676 |
+
class ClassificationHead(nn.Module):
|
677 |
+
"""Head for sentence-level classification tasks."""
|
678 |
+
def __init__(self, config):
|
679 |
+
super(ClassificationHead, self).__init__()
|
680 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
681 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
682 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
683 |
+
|
684 |
+
def forward(self, features, **kwargs):
|
685 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
686 |
+
x = self.dropout(x)
|
687 |
+
x = self.dense(x)
|
688 |
+
x = torch.tanh(x)
|
689 |
+
x = self.dropout(x)
|
690 |
+
x = self.out_proj(x)
|
691 |
+
return x
|
692 |
+
|
693 |
+
##########################################
|
694 |
+
# HuggingFace Config
|
695 |
+
##########################################
|
696 |
+
class StructFormerConfig(PretrainedConfig):
|
697 |
+
model_type = "structformer"
|
698 |
+
|
699 |
+
def __init__(
|
700 |
+
self,
|
701 |
+
hidden_size=512,
|
702 |
+
nlayers=8,
|
703 |
+
ntokens=10_000,
|
704 |
+
nhead=8,
|
705 |
+
dropout=0.1,
|
706 |
+
dropatt=0.1,
|
707 |
+
relative_bias=False,
|
708 |
+
pos_emb=False,
|
709 |
+
pad=0,
|
710 |
+
n_parser_layers=4,
|
711 |
+
conv_size=9,
|
712 |
+
relations=('head', 'child'),
|
713 |
+
weight_act='softmax',
|
714 |
+
num_labels=1,
|
715 |
+
hidden_dropout_prob=0.1,
|
716 |
+
initializer_range=0.02,
|
717 |
+
**kwargs,
|
718 |
+
):
|
719 |
+
self.hidden_size = hidden_size
|
720 |
+
self.nlayers = nlayers
|
721 |
+
self.ntokens = ntokens
|
722 |
+
self.nhead = nhead
|
723 |
+
self.dropout = dropout
|
724 |
+
self.dropatt = dropatt
|
725 |
+
self.relative_bias = relative_bias
|
726 |
+
self.pos_emb = pos_emb
|
727 |
+
self.pad = pad
|
728 |
+
self.n_parser_layers = n_parser_layers
|
729 |
+
self.conv_size = conv_size
|
730 |
+
self.relations = relations
|
731 |
+
self.weight_act = weight_act
|
732 |
+
self.num_labels = num_labels
|
733 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
734 |
+
self.initializer_range=initializer_range
|
735 |
+
super().__init__(**kwargs)
|
736 |
+
|
737 |
+
class TransformerConfig(PretrainedConfig):
|
738 |
+
model_type = "transformer"
|
739 |
+
|
740 |
+
def __init__(
|
741 |
+
self,
|
742 |
+
hidden_size=512,
|
743 |
+
nlayers=8,
|
744 |
+
ntokens=10_000,
|
745 |
+
nhead=8,
|
746 |
+
dropout=0.1,
|
747 |
+
dropatt=0.1,
|
748 |
+
relative_bias=False,
|
749 |
+
pos_emb=False,
|
750 |
+
pad=0,
|
751 |
+
num_labels=1,
|
752 |
+
hidden_dropout_prob=0.1,
|
753 |
+
initializer_range=0.02,
|
754 |
+
**kwargs,
|
755 |
+
):
|
756 |
+
self.hidden_size = hidden_size
|
757 |
+
self.nlayers = nlayers
|
758 |
+
self.ntokens = ntokens
|
759 |
+
self.nhead = nhead
|
760 |
+
self.dropout = dropout
|
761 |
+
self.dropatt = dropatt
|
762 |
+
self.relative_bias = relative_bias
|
763 |
+
self.pos_emb = pos_emb
|
764 |
+
self.pad = pad
|
765 |
+
self.num_labels = num_labels
|
766 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
767 |
+
self.initializer_range=initializer_range
|
768 |
+
super().__init__(**kwargs)
|
769 |
+
|
770 |
+
|
771 |
+
|
772 |
+
##########################################
|
773 |
+
# HuggingFace Models
|
774 |
+
##########################################
|
775 |
+
class StructFormerModel(PreTrainedModel):
|
776 |
+
config_class = StructFormerConfig
|
777 |
+
|
778 |
+
def __init__(self, config):
|
779 |
+
super().__init__(config)
|
780 |
+
self.model = StructFormer(
|
781 |
+
hidden_size=config.hidden_size,
|
782 |
+
nlayers=config.nlayers,
|
783 |
+
ntokens=config.ntokens,
|
784 |
+
nhead=config.nhead,
|
785 |
+
dropout=config.dropout,
|
786 |
+
dropatt=config.dropatt,
|
787 |
+
relative_bias=config.relative_bias,
|
788 |
+
pos_emb=config.pos_emb,
|
789 |
+
pad=config.pad,
|
790 |
+
n_parser_layers=config.n_parser_layers,
|
791 |
+
conv_size=config.conv_size,
|
792 |
+
relations=config.relations,
|
793 |
+
weight_act=config.weight_act
|
794 |
+
)
|
795 |
+
self.config = config
|
796 |
+
|
797 |
+
def parse(self, input_ids, **kwargs):
|
798 |
+
x = input_ids
|
799 |
+
batch_size, length = x.size()
|
800 |
+
pos = kwargs['position_ids'] if 'position_ids' in kwargs.keys() else torch.arange(length, device=x.device).expand(batch_size, length)
|
801 |
+
|
802 |
+
sf_output = self.model(x, pos)
|
803 |
+
|
804 |
+
return sf_output[1]
|
805 |
+
|
806 |
+
def forward(self, input_ids, labels=None, **kwargs):
|
807 |
+
x = input_ids
|
808 |
+
batch_size, length = x.size()
|
809 |
+
pos = kwargs['position_ids'] if 'position_ids' in kwargs.keys() else torch.arange(length, device=x.device).expand(batch_size, length)
|
810 |
+
|
811 |
+
sf_output = self.model(x, pos)
|
812 |
+
|
813 |
+
loss = None
|
814 |
+
if labels is not None:
|
815 |
+
loss_fct = nn.CrossEntropyLoss()
|
816 |
+
loss = loss_fct(sf_output[0], labels.reshape(-1))
|
817 |
+
|
818 |
+
return MaskedLMOutput(
|
819 |
+
loss=loss, # shape: 1
|
820 |
+
logits=sf_output[0].view(batch_size, length, -1), # shape: (batch_size, length, ntokens)
|
821 |
+
hidden_states=None,
|
822 |
+
attentions=None
|
823 |
+
)
|
824 |
+
|
825 |
+
class StructFormerModelForSequenceClassification(PreTrainedModel):
|
826 |
+
config_class = StructFormerConfig
|
827 |
+
|
828 |
+
def __init__(self, config):
|
829 |
+
super().__init__(config)
|
830 |
+
self.model = StructFormer(
|
831 |
+
hidden_size=config.hidden_size,
|
832 |
+
nlayers=config.nlayers,
|
833 |
+
ntokens=config.ntokens,
|
834 |
+
nhead=config.nhead,
|
835 |
+
dropout=config.dropout,
|
836 |
+
dropatt=config.dropatt,
|
837 |
+
relative_bias=config.relative_bias,
|
838 |
+
pos_emb=config.pos_emb,
|
839 |
+
pad=config.pad,
|
840 |
+
n_parser_layers=config.n_parser_layers,
|
841 |
+
conv_size=config.conv_size,
|
842 |
+
relations=config.relations,
|
843 |
+
weight_act=config.weight_act
|
844 |
+
)
|
845 |
+
self.config = config
|
846 |
+
self.num_labels = config.num_labels
|
847 |
+
self.model.classifier = ClassificationHead(config)
|
848 |
+
|
849 |
+
def _init_weights(self, module):
|
850 |
+
"""Initialize the weights"""
|
851 |
+
if isinstance(module, nn.Linear):
|
852 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
853 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
854 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
855 |
+
if module.bias is not None:
|
856 |
+
module.bias.data.zero_()
|
857 |
+
elif isinstance(module, nn.Embedding):
|
858 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
859 |
+
if module.padding_idx is not None:
|
860 |
+
module.weight.data[module.padding_idx].zero_()
|
861 |
+
elif isinstance(module, nn.LayerNorm):
|
862 |
+
if module.bias is not None:
|
863 |
+
module.bias.data.zero_()
|
864 |
+
module.weight.data.fill_(1.0)
|
865 |
+
|
866 |
+
def forward(self, input_ids, labels=None, **kwargs):
|
867 |
+
x = input_ids
|
868 |
+
batch_size, length = x.size()
|
869 |
+
pos = kwargs['position_ids'] if 'position_ids' in kwargs.keys() else torch.arange(length, device=x.device).expand(batch_size, length)
|
870 |
+
|
871 |
+
sf_output = self.model(x, pos)
|
872 |
+
|
873 |
+
logits = self.model.classifier(sf_output[1]['raw_output'])
|
874 |
+
loss = None
|
875 |
+
if labels is not None:
|
876 |
+
if self.config.problem_type is None:
|
877 |
+
if self.num_labels == 1:
|
878 |
+
self.config.problem_type = "regression"
|
879 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
880 |
+
self.config.problem_type = "single_label_classification"
|
881 |
+
else:
|
882 |
+
self.config.problem_type = "multi_label_classification"
|
883 |
+
|
884 |
+
if self.config.problem_type == "regression":
|
885 |
+
loss_fct = nn.MSELoss()
|
886 |
+
if self.num_labels == 1:
|
887 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
888 |
+
else:
|
889 |
+
loss = loss_fct(logits, labels)
|
890 |
+
elif self.config.problem_type == "single_label_classification":
|
891 |
+
loss_fct = nn.CrossEntropyLoss()
|
892 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
893 |
+
elif self.config.problem_type == "multi_label_classification":
|
894 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
895 |
+
loss = loss_fct(logits, labels)
|
896 |
+
|
897 |
+
return SequenceClassifierOutput(
|
898 |
+
loss=loss,
|
899 |
+
logits=logits,
|
900 |
+
hidden_states=None,
|
901 |
+
attentions=None,
|
902 |
+
)
|
903 |
+
|
904 |
+
class TransformerModel(PreTrainedModel):
|
905 |
+
config_class = TransformerConfig
|
906 |
+
|
907 |
+
def __init__(self, config):
|
908 |
+
super().__init__(config)
|
909 |
+
self.model = Transformer(
|
910 |
+
hidden_size=config.hidden_size,
|
911 |
+
nlayers=config.nlayers,
|
912 |
+
ntokens=config.ntokens,
|
913 |
+
nhead=config.nhead,
|
914 |
+
dropout=config.dropout,
|
915 |
+
dropatt=config.dropatt,
|
916 |
+
relative_bias=config.relative_bias,
|
917 |
+
pos_emb=config.pos_emb,
|
918 |
+
pad=config.pad
|
919 |
+
)
|
920 |
+
self.config = config
|
921 |
+
|
922 |
+
def forward(self, input_ids, labels=None, **kwargs):
|
923 |
+
x = input_ids
|
924 |
+
batch_size, length = x.size()
|
925 |
+
pos = kwargs['position_ids'] if 'position_ids' in kwargs.keys() else torch.arange(length, device=x.device).expand(batch_size, length)
|
926 |
+
|
927 |
+
sf_output = self.model(x, pos)
|
928 |
+
|
929 |
+
loss = None
|
930 |
+
if labels is not None:
|
931 |
+
loss_fct = nn.CrossEntropyLoss()
|
932 |
+
loss = loss_fct(sf_output[0], labels.reshape(-1))
|
933 |
+
|
934 |
+
return MaskedLMOutput(
|
935 |
+
loss=loss, # shape: 1
|
936 |
+
logits=sf_output[0].view(batch_size, length, -1), # shape: (batch_size, length, ntokens)
|
937 |
+
hidden_states=None,
|
938 |
+
attentions=None
|
939 |
+
)
|
940 |
+
|
941 |
+
class TransformerModelForSequenceClassification(PreTrainedModel):
|
942 |
+
config_class = TransformerConfig
|
943 |
+
|
944 |
+
def __init__(self, config):
|
945 |
+
super().__init__(config)
|
946 |
+
self.model = StructFormer(
|
947 |
+
hidden_size=config.hidden_size,
|
948 |
+
nlayers=config.nlayers,
|
949 |
+
ntokens=config.ntokens,
|
950 |
+
nhead=config.nhead,
|
951 |
+
dropout=config.dropout,
|
952 |
+
dropatt=config.dropatt,
|
953 |
+
relative_bias=config.relative_bias,
|
954 |
+
pos_emb=config.pos_emb,
|
955 |
+
pad=config.pad
|
956 |
+
)
|
957 |
+
self.config = config
|
958 |
+
self.num_labels = config.num_labels
|
959 |
+
self.model.classifier = ClassificationHead(config)
|
960 |
+
|
961 |
+
def _init_weights(self, module):
|
962 |
+
"""Initialize the weights"""
|
963 |
+
if isinstance(module, nn.Linear):
|
964 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
965 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
966 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
967 |
+
if module.bias is not None:
|
968 |
+
module.bias.data.zero_()
|
969 |
+
elif isinstance(module, nn.Embedding):
|
970 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
971 |
+
if module.padding_idx is not None:
|
972 |
+
module.weight.data[module.padding_idx].zero_()
|
973 |
+
elif isinstance(module, nn.LayerNorm):
|
974 |
+
if module.bias is not None:
|
975 |
+
module.bias.data.zero_()
|
976 |
+
module.weight.data.fill_(1.0)
|
977 |
+
|
978 |
+
def forward(self, input_ids, labels=None, **kwargs):
|
979 |
+
x = input_ids
|
980 |
+
batch_size, length = x.size()
|
981 |
+
pos = kwargs['position_ids'] if 'position_ids' in kwargs.keys() else torch.arange(length, device=x.device).expand(batch_size, length)
|
982 |
+
|
983 |
+
sf_output = self.model(x, pos)
|
984 |
+
|
985 |
+
logits = self.model.classifier(sf_output[1]['raw_output'])
|
986 |
+
loss = None
|
987 |
+
if labels is not None:
|
988 |
+
if self.config.problem_type is None:
|
989 |
+
if self.num_labels == 1:
|
990 |
+
self.config.problem_type = "regression"
|
991 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
992 |
+
self.config.problem_type = "single_label_classification"
|
993 |
+
else:
|
994 |
+
self.config.problem_type = "multi_label_classification"
|
995 |
+
|
996 |
+
if self.config.problem_type == "regression":
|
997 |
+
loss_fct = nn.MSELoss()
|
998 |
+
if self.num_labels == 1:
|
999 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1000 |
+
else:
|
1001 |
+
loss = loss_fct(logits, labels)
|
1002 |
+
elif self.config.problem_type == "single_label_classification":
|
1003 |
+
loss_fct = nn.CrossEntropyLoss()
|
1004 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1005 |
+
elif self.config.problem_type == "multi_label_classification":
|
1006 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1007 |
+
loss = loss_fct(logits, labels)
|
1008 |
+
|
1009 |
+
return SequenceClassifierOutput(
|
1010 |
+
loss=loss,
|
1011 |
+
logits=logits,
|
1012 |
+
hidden_states=None,
|
1013 |
+
attentions=None,
|
1014 |
+
)
|