--- base_model: ondevicellm/tinyllama_mole_v1 tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: tinyllama_mole_sftv2_ultrachat_ep3 results: [] --- # tinyllama_mole_sftv2_ultrachat_ep3 This model is a fine-tuned version of [ondevicellm/tinyllama_mole_v1](https://huggingface.co/ondevicellm/tinyllama_mole_v1) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.7340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 120 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7643 | 0.09 | 100 | 2.7492 | | 2.7293 | 0.18 | 200 | 2.7330 | | 2.6973 | 0.26 | 300 | 2.6920 | | 2.612 | 0.35 | 400 | 2.6290 | | 2.5257 | 0.44 | 500 | 2.5470 | | 2.4656 | 0.53 | 600 | 2.4527 | | 2.3607 | 0.61 | 700 | 2.3681 | | 2.2885 | 0.7 | 800 | 2.2988 | | 2.2384 | 0.79 | 900 | 2.2397 | | 2.1585 | 0.88 | 1000 | 2.1877 | | 2.1526 | 0.96 | 1100 | 2.1409 | | 2.0845 | 1.05 | 1200 | 2.0986 | | 2.049 | 1.14 | 1300 | 2.0603 | | 2.0243 | 1.23 | 1400 | 2.0257 | | 1.9899 | 1.31 | 1500 | 1.9950 | | 1.9706 | 1.4 | 1600 | 1.9675 | | 1.9414 | 1.49 | 1700 | 1.9429 | | 1.8952 | 1.58 | 1800 | 1.9208 | | 1.9038 | 1.66 | 1900 | 1.9013 | | 1.8942 | 1.75 | 2000 | 1.8839 | | 1.8652 | 1.84 | 2100 | 1.8679 | | 1.823 | 1.93 | 2200 | 1.8531 | | 1.8394 | 2.01 | 2300 | 1.8394 | | 1.8347 | 2.1 | 2400 | 1.8268 | | 1.8137 | 2.19 | 2500 | 1.8148 | | 1.799 | 2.28 | 2600 | 1.8037 | | 1.7774 | 2.37 | 2700 | 1.7931 | | 1.771 | 2.45 | 2800 | 1.7832 | | 1.7761 | 2.54 | 2900 | 1.7739 | | 1.7458 | 2.63 | 3000 | 1.7652 | | 1.7683 | 2.72 | 3100 | 1.7570 | | 1.7389 | 2.8 | 3200 | 1.7490 | | 1.7321 | 2.89 | 3300 | 1.7414 | | 1.7418 | 2.98 | 3400 | 1.7340 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu118 - Datasets 2.14.6 - Tokenizers 0.15.0