--- library_name: transformers license: apache-2.0 base_model: - ibm-granite/granite-8b-code-base-4k --- Bitsandbytes quantization of https://huggingface.co/ibm-granite/granite-8b-code-base-4k. See https://huggingface.co/blog/4bit-transformers-bitsandbytes for instructions. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import BitsAndBytesConfig import torch # Define the 4-bit configuration nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16 ) # Load the pre-trained model with the 4-bit quantization configuration model = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-8b-code-base-4k", quantization_config=nf4_config) # Load the tokenizer associated with the model tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-8b-code-base-4k") # Push the model and tokenizer to the Hugging Face hub model.push_to_hub("onekq-ai/granite-8b-code-base-4k-bnb-4bit", use_auth_token=True) tokenizer.push_to_hub("onekq-ai/granite-8b-code-base-4k-bnb-4bit", use_auth_token=True) ```