--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: attraction-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8021680216802168 --- # attraction-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5632 - Accuracy: 0.8022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 69 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6613 | 0.48 | 100 | 0.6067 | 0.6477 | | 0.6115 | 0.97 | 200 | 0.5579 | 0.6992 | | 0.5542 | 1.45 | 300 | 0.5501 | 0.7182 | | 0.4758 | 1.93 | 400 | 0.5108 | 0.7534 | | 0.5219 | 2.42 | 500 | 0.5122 | 0.7561 | | 0.4631 | 2.9 | 600 | 0.4842 | 0.7832 | | 0.3866 | 3.38 | 700 | 0.5298 | 0.7480 | | 0.3704 | 3.86 | 800 | 0.4963 | 0.7453 | | 0.4222 | 4.35 | 900 | 0.4832 | 0.7561 | | 0.3162 | 4.83 | 1000 | 0.4807 | 0.7778 | | 0.2686 | 5.31 | 1100 | 0.4949 | 0.7859 | | 0.304 | 5.8 | 1200 | 0.4719 | 0.7751 | | 0.2246 | 6.28 | 1300 | 0.5014 | 0.8157 | | 0.2503 | 6.76 | 1400 | 0.5077 | 0.8103 | | 0.169 | 7.25 | 1500 | 0.4630 | 0.8238 | | 0.2248 | 7.73 | 1600 | 0.5329 | 0.7832 | | 0.164 | 8.21 | 1700 | 0.5608 | 0.7859 | | 0.208 | 8.7 | 1800 | 0.5632 | 0.8022 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0