--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: attraction-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7102137767220903 --- # attraction-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6785 - Accuracy: 0.7102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 69 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6169 | 0.63 | 150 | 0.5812 | 0.6841 | | 0.4724 | 1.27 | 300 | 0.5037 | 0.7553 | | 0.5545 | 1.9 | 450 | 0.5195 | 0.7553 | | 0.3928 | 2.53 | 600 | 0.5964 | 0.7102 | | 0.3937 | 3.16 | 750 | 0.4637 | 0.7933 | | 0.3897 | 3.8 | 900 | 0.4548 | 0.8076 | | 0.356 | 4.43 | 1050 | 0.5327 | 0.7648 | | 0.319 | 5.06 | 1200 | 0.5126 | 0.7720 | | 0.3526 | 5.7 | 1350 | 0.6785 | 0.7102 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0