--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.649850827230811 --- # Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold5 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.1823 - Accuracy: 0.6499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1635 | 1.0 | 924 | 1.1860 | 0.5948 | | 1.0619 | 2.0 | 1848 | 1.0310 | 0.6455 | | 0.646 | 3.0 | 2772 | 1.0620 | 0.6509 | | 0.3294 | 4.0 | 3696 | 1.2169 | 0.6599 | | 0.2648 | 5.0 | 4620 | 1.4374 | 0.6455 | | 0.1957 | 6.0 | 5544 | 1.7164 | 0.6420 | | 0.131 | 7.0 | 6468 | 2.0272 | 0.6488 | | 0.0817 | 8.0 | 7392 | 2.2750 | 0.6447 | | 0.0483 | 9.0 | 8316 | 2.4384 | 0.6431 | | 0.0451 | 10.0 | 9240 | 2.6186 | 0.6447 | | 0.0224 | 11.0 | 10164 | 2.7368 | 0.6463 | | 0.0134 | 12.0 | 11088 | 2.9439 | 0.6477 | | 0.0023 | 13.0 | 12012 | 2.9691 | 0.6520 | | 0.0074 | 14.0 | 12936 | 3.0721 | 0.6450 | | 0.0231 | 15.0 | 13860 | 3.1373 | 0.6499 | | 0.0004 | 16.0 | 14784 | 3.2089 | 0.6474 | | 0.0062 | 17.0 | 15708 | 3.1483 | 0.6493 | | 0.0132 | 18.0 | 16632 | 3.1830 | 0.6515 | | 0.0034 | 19.0 | 17556 | 3.1843 | 0.6474 | | 0.0796 | 20.0 | 18480 | 3.1823 | 0.6499 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1