--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6581591094216671 --- # Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold1 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6175 - Accuracy: 0.6582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0967 | 1.0 | 924 | 1.1282 | 0.6305 | | 0.9514 | 2.0 | 1848 | 1.0677 | 0.6335 | | 0.8134 | 3.0 | 2772 | 0.9657 | 0.6761 | | 0.5172 | 4.0 | 3696 | 1.0638 | 0.6641 | | 0.4644 | 5.0 | 4620 | 1.1745 | 0.6655 | | 0.3079 | 6.0 | 5544 | 1.2914 | 0.6601 | | 0.1569 | 7.0 | 6468 | 1.4210 | 0.6636 | | 0.1324 | 8.0 | 7392 | 1.5083 | 0.6603 | | 0.0833 | 9.0 | 8316 | 1.5875 | 0.6644 | | 0.1019 | 10.0 | 9240 | 1.6175 | 0.6582 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1