File size: 10,627 Bytes
4685882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e91d4e
4685882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939ad2
 
 
4685882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a70f0e4
4685882
 
 
 
6e91d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4685882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e91d4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
license: apache-2.0
library_name: transformers.js
language:
- en
base_model:
- hexgrad/Kokoro-82M
pipeline_tag: text-to-speech
---

# Kokoro TTS

Kokoro is a frontier TTS model for its size of 82 million parameters (text in/audio out).

## Table of contents

- [Usage](#usage)
  - [JavaScript](#javascript)
  - [Python](#python)
- [Voices/Samples](#voicessamples)
- [Quantizations](#quantizations)


## Usage

### JavaScript

First, install the `kokoro-js` library from [NPM](https://npmjs.com/package/kokoro-js) using:
```bash
npm i kokoro-js
```

You can then generate speech as follows:

```js
import { KokoroTTS } from "kokoro-js";

const model_id = "onnx-community/Kokoro-82M-ONNX";
const tts = await KokoroTTS.from_pretrained(model_id, {
  dtype: "q8", // Options: "fp32", "fp16", "q8", "q4", "q4f16"
});

const text = "Life is like a box of chocolates. You never know what you're gonna get.";
const audio = await tts.generate(text, {
  // Use `tts.list_voices()` to list all available voices
  voice: "af_bella",
});
audio.save("audio.wav");
```


### Python

```python
import os
import numpy as np
from onnxruntime import InferenceSession

# You can generate token ids as follows:
#   1. Convert input text to phonemes using https://github.com/hexgrad/misaki
#   2. Map phonemes to ids using https://huggingface.co/hexgrad/Kokoro-82M/blob/785407d1adfa7ae8fbef8ffd85f34ca127da3039/config.json#L34-L148
tokens = [50, 157, 43, 135, 16, 53, 135, 46, 16, 43, 102, 16, 56, 156, 57, 135, 6, 16, 102, 62, 61, 16, 70, 56, 16, 138, 56, 156, 72, 56, 61, 85, 123, 83, 44, 83, 54, 16, 53, 65, 156, 86, 61, 62, 131, 83, 56, 4, 16, 54, 156, 43, 102, 53, 16, 156, 72, 61, 53, 102, 112, 16, 70, 56, 16, 138, 56, 44, 156, 76, 158, 123, 56, 16, 62, 131, 156, 43, 102, 54, 46, 16, 102, 48, 16, 81, 47, 102, 54, 16, 54, 156, 51, 158, 46, 16, 70, 16, 92, 156, 135, 46, 16, 54, 156, 43, 102, 48, 4, 16, 81, 47, 102, 16, 50, 156, 72, 64, 83, 56, 62, 16, 156, 51, 158, 64, 83, 56, 16, 44, 157, 102, 56, 16, 44, 156, 76, 158, 123, 56, 4]

# Context length is 512, but leave room for the pad token 0 at the start & end
assert len(tokens) <= 510, len(tokens)

# Style vector based on len(tokens), ref_s has shape (1, 256)
voices = np.fromfile('./voices/af.bin', dtype=np.float32).reshape(-1, 1, 256)
ref_s = voices[len(tokens)]

# Add the pad ids, and reshape tokens, should now have shape (1, <=512)
tokens = [[0, *tokens, 0]]

model_name = 'model.onnx' # Options: model.onnx, model_fp16.onnx, model_quantized.onnx, model_q8f16.onnx, model_uint8.onnx, model_uint8f16.onnx, model_q4.onnx, model_q4f16.onnx
sess = InferenceSession(os.path.join('onnx', model_name))

audio = sess.run(None, dict(
    input_ids=tokens,
    style=ref_s,
    speed=np.ones(1, dtype=np.float32),
))[0]
```

Optionally, save the audio to a file:
```py
import scipy.io.wavfile as wavfile
wavfile.write('audio.wav', 24000, audio[0])
```


## Voices/Samples


> Life is like a box of chocolates. You never know what you're gonna get.


| Name         | Nationality | Gender | Sample                                                                                                                                  |
| ------------ | ----------- | ------ | --------------------------------------------------------------------------------------------------------------------------------------- |
| **af_heart** | American    | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/S_9tkA75BT_QHKOzSX6S-.wav"></audio> |
| af_alloy     | American    | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/wiZ3gvlL--p5pRItO4YRE.wav"></audio> |
| af_aoede     | American    | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/Nv1xMwzjTdF9MR8v0oEEJ.wav"></audio> |
| af_bella     | American    | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/sWN0rnKU6TlLsVdGqRktF.wav"></audio> |
| af_jessica   | American    | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/2Oa4wITWAmiCXJ_Q97-7R.wav"></audio> |
| af_kore      | American    | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/AOIgyspzZWDGpn7oQgwtu.wav"></audio> |
| af_nicole    | American    | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/EY_V2OGr-hzmtTGrTCTyf.wav"></audio> |
| af_nova      | American    | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/X-xdEkx3GPlQG5DK8Gsqd.wav"></audio> |
| af_river     | American    | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/ZqaV2-xGUZdBQmZAF1Xqy.wav"></audio> |
| af_sarah     | American    | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/xzoJBl1HCvkE8Fl8Xu2R4.wav"></audio> |
| af_sky       | American    | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/ubebYQoaseyQk-jDLeWX7.wav"></audio> |
| am_adam      | American    | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/tvauhDVRGvGK98I-4wv3H.wav"></audio> |
| am_echo      | American    | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/qy_KuUB0hXsu-u8XaJJ_Z.wav"></audio> |
| am_eric      | American    | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/JhqPjbpMhraUv5nTSPpwD.wav"></audio> |
| am_fenrir    | American    | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/c0R9caBdBiNjGUUalI_DQ.wav"></audio> |
| am_liam      | American    | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/DFHvulaLeOjXIDKecvNG3.wav"></audio> |
| am_michael   | American    | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/IPKhsnjq1tPh3JmHH8nEg.wav"></audio> |
| am_onyx      | American    | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/ov0pFDfE8NNKZ80LqW6Di.wav"></audio> |
| am_puck      | American    | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/MOC654sLMHWI64g8HWesV.wav"></audio> |
| am_santa     | American    | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/LzA6JmHBvQlhOviy8qVfJ.wav"></audio> |
| bf_alice    | British     | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/9mnYZ3JWq7f6U12plXilA.wav"></audio> |
| bf_emma     | British     | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/_fvGtKMttRI0cZVGqxMh8.wav"></audio> |
| bf_isabella | British     | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/VzlcJpqGEND_Q3duYnhiu.wav"></audio> |
| bf_lily     | British     | Female | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/qZCoartohiRlVamY8Xpok.wav"></audio> |
| bm_daniel   | British     | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/Eb0TLnLXHDRYOA3TJQKq3.wav"></audio> |
| bm_fable    | British     | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/NT9XkmvlezQ0FJ6Th5hoZ.wav"></audio> |
| bm_george   | British     | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/y6VJbCESszLZGupPoqNkF.wav"></audio> |
| bm_lewis    | British     | Male   | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/RlB5BRvLt-IFvTjzQNxCh.wav"></audio> |


## Quantizations

The model is resilient to quantization, enabling efficient high-quality speech synthesis at a fraction of the original model size. 

> How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born.


| Model                                          | Size (MB) | Sample                                                                                                                                  |
|------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| model.onnx (fp32)                              | 326       | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/njexBuqPzfYUvWgs9eQ-_.wav"></audio> |
| model_fp16.onnx (fp16)                         | 163       | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/8Ebl44hMQonZs4MlykExt.wav"></audio> |
| model_quantized.onnx (8-bit)                   | 92.4      | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/9SLOt6ETclZ4yRdlJ0VIj.wav"></audio> |
| model_q8f16.onnx (Mixed precision)             | 86        | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/gNDMqb33YEmYMbAIv_Grx.wav"></audio> |
| model_uint8.onnx (8-bit & mixed precision)     | 177       | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/tpOWRHIWwEb0PJX46dCWQ.wav"></audio> |
| model_uint8f16.onnx (Mixed precision)          | 114       | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/vtZhABzjP0pvGD7dRb5Vr.wav"></audio> |
| model_q4.onnx (4-bit matmul)                   | 305       | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/8FVn0IJIUfccEBWq8Fnw_.wav"></audio> |
| model_q4f16.onnx (4-bit matmul & fp16 weights) | 154       | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/7DrgWC_1q00s-wUJuG44X.wav"></audio> |