File size: 8,614 Bytes
9f3edac
 
bffbe64
 
9f3edac
 
bffbe64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f3edac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bffbe64
 
9f3edac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
license: apache-2.0
tags:
- MDEL
---

# Model Name
Multi-Domain-Expert-Layers/MDEL-theblackcat-chat-5-experts 

# Model Description
This model was generated by averaging the weights of the following models 
- [Multi-Domain-Expert-Layers/expert-pubmed_central](https://huggingface.co/Multi-Domain-Expert-Layers/expert-pubmed_central)
- [Multi-Domain-Expert-Layers/expert-freelaw](https://huggingface.co/Multi-Domain-Expert-Layers/expert-freelaw)
- [Multi-Domain-Expert-Layers/expert-github](https://huggingface.co/Multi-Domain-Expert-Layers/expert-github)
- [Multi-Domain-Expert-Layers/expert-uspto](https://huggingface.co/Multi-Domain-Expert-Layers/expert-uspto)
- [Multi-Domain-Expert-Layers/expert-arxiv](https://huggingface.co/Multi-Domain-Expert-Layers/expert-arxiv)
- [theblackcat102/pythia-1b-deduped-sft](theblackcat102/pythia-1b-deduped-sft)
- We also keep a mixture that is primarily one of the above as an expert that can be loaded on demand.

### NOTE: There is a mistake below where we are using a routed expert for pubmed-abstract, but we merged pubmed central

```
# test merged experts
# TODO: add dynamic routing, testing better expert mixtures

from transformers import AutoTokenizer, AutoModelForCausalLM

import torch

from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM, GPTNeoXLayer
from torch import nn
class GPTNeoXExpertsForCasualLM(GPTNeoXForCausalLM):
  """ Stores various experts for layers 9, 10 """ # , 11
  def __init__(self, config):
    super().__init__(config)
    self.config = config
    self.orig_chat = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
    self.uspto_expert  = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
    self.github_expert  = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
    self.pubmed_abstracts_expert  = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
    self.freelaw_expert  = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
    self.arxiv_expert  = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
    self.merged_chat_expert  = nn.ModuleList([GPTNeoXLayer(config) for _ in range(2)])
    self.curr_expert = "merged_chat_expert"

  def generate_with_expert(self, text, tokenizer, expert="merged_chat_expert", return_answer_only=False, do_self_contrastive=True, max_length=512, min_length=1, max_return_sequences=1, do_sample=True, do_beam=False, device="cuda", target_lang=None):
    """Generates using one of the experts."""
    tokenizer.pad_token = tokenizer.eos_token 
    if expert != self.curr_expert:
      self.curr_expert = expert
      for layer_id in range(2):
        if expert == "orig_chat":
          self.gpt_neox.layers[layer_id+9] = self.orig_chat[layer_id]
        elif expert == "uspto_expert":
          self.gpt_neox.layers[layer_id+9] = self.uspto_expert[layer_id]
        elif expert == "github_expert":
          self.gpt_neox.layers[layer_id+9] = self.github_expert[layer_id]
        elif expert == "pubmed_abstracts_expert":
          self.gpt_neox.layers[layer_id+9] = self.pubmed_abstracts_expert[layer_id]
        elif expert == "arxiv_expert":
          self.gpt_neox.layers[layer_id+9] = self.arxiv_expert[layer_id]
        elif expert == "freelaw_expert":
          self.gpt_neox.layers[layer_id+9] = self.freelaw_expert[layer_id]
        elif expert == "merged_chat_expert":
          self.gpt_neox.layers[layer_id+9] = self.merged_chat_expert[layer_id]
          
    if type(text) is str:
      text = [text]
    text = [p.strip() for p in text]
    input_ids = tokenizer(text, return_tensors='pt',padding=True, truncation=True, max_length=max_length )
    input_ids = input_ids.to(device)
    with torch.no_grad():
      outputs = self.generate(
                **input_ids,
                max_length=max_length,
                repetition_penalty=1.1,
                min_length=min_length,
                do_sample=True,
                top_p=0.95,
                penalty_alpha=0.6 if do_self_contrastive else None, 
                top_k=10, 
                )
      ret = []
      for i in range(len(outputs)): # can use batch_decode, unless we want to do something special here
        out = tokenizer.decode(outputs[i], skip_special_tokens=True)
        if return_answer_only:
          out = out[len(text[i]):].lstrip(".? \n\t")
        ret.append(out)
      
    return ret

tokenizer = AutoTokenizer.from_pretrained("theblackcat102/pythia-1b-deduped-sft")

tokenizer.pad_token = tokenizer.eos_token 
      

model1 = GPTNeoXExpertsForCasualLM.from_pretrained("Multi-Domain-Expert-Layers/MDEL-theblackcat-chat-5-experts")
model1=model1.half().cuda().eval()
for expert in ["orig_chat", "merged_chat_expert", "uspto_expert", "github_expert", "pubmed_abstracts_expert", "arxiv_expert", "freelaw_expert"]:
  print (f'## {expert}')
  print (model1.generate_with_expert("<human> Write a patent about an electric toothbrush\n<bot>", tokenizer, expert=expert)[0])
  print (f'## {expert} more')
  print (model1.generate_with_expert("Field of the Invention.\nAn electric toothbrush\n", tokenizer, expert=expert)[0])
```

### To recreate the expert, modify this script. We can also extend to do dynamic merging and/or experitment with different weights for different layers.

```

def recreate_merged_expert():
  model1 = GPTNeoXExpertsForCasualLM.from_pretrained("theblackcat102/pythia-1b-deduped-sft").float()

  model2 = AutoModelForCausalLM.from_pretrained("stillerman/MDEL-pubmed-feelaw-github-arxiv").float()

  model_uspto = AutoModelForCausalLM.from_pretrained("Multi-Domain-Expert-Layers/expert-uspto").float()

  model_github = AutoModelForCausalLM.from_pretrained("Multi-Domain-Expert-Layers/expert-github").float()
  model_pubmed_abstracts = AutoModelForCausalLM.from_pretrained("Multi-Domain-Expert-Layers/expert-pubmed_abstracts").float()
  model_freelaw = AutoModelForCausalLM.from_pretrained("Multi-Domain-Expert-Layers/expert-freelaw").float()
  model_arxiv = AutoModelForCausalLM.from_pretrained("Multi-Domain-Expert-Layers/expert-arxiv").float()

  model = AutoModelForCausalLM.from_pretrained("theblackcat102/pythia-1b-deduped-sft").float() # half().cuda().eval()

  with torch.no_grad():
    for layer_id in [9,10]: #9,10,11,12,13
      model1.orig_chat[layer_id-9] = model.gpt_neox.layers[layer_id]
    
    for layer_id in [9,10]: #9,10,11,12,13
      for p1, p2, p3 in zip(model1.gpt_neox.layers[layer_id].parameters(), model2.gpt_neox.layers[layer_id].parameters(), model_uspto.gpt_neox.layers[layer_id].parameters()):
        p1.data = p1.data*.6 + p2.data*0.3 + p3.data*0.1
      model1.merged_chat_expert[layer_id-9] = model1.gpt_neox.layers[layer_id]

    #model1.uspto_expert.layers_9_10_11 = []
    for layer_id in [9,10]: #9,10,11,12,13
      for p1, p2 in zip(model_uspto.gpt_neox.layers[layer_id].parameters(), model.gpt_neox.layers[layer_id].parameters()):
        p1.data = p1.data*.6 + p2.data*0.4 
      model1.uspto_expert[layer_id-9] = model_uspto.gpt_neox.layers[layer_id]

    #model1.github_expert.layers_9_10_11 = []
    for layer_id in [9,10]: #9,10,11,12,13
      for p1, p2 in zip(model_github.gpt_neox.layers[layer_id].parameters(), model.gpt_neox.layers[layer_id].parameters()):
        p1.data = p1.data*.6 + p2.data*0.4 
      model1.github_expert[layer_id-9] = model_github.gpt_neox.layers[layer_id]

    #model1.pubmed_abstracts_expert.layers_9_10_11 = []
    for layer_id in [9,10]: #9,10,11,12,13
      for p1, p2 in zip(model_pubmed_abstracts.gpt_neox.layers[layer_id].parameters(), model.gpt_neox.layers[layer_id].parameters()):
        p1.data = p1.data*.6 + p2.data*0.4 
      model1.pubmed_abstracts_expert[layer_id-9] = model_pubmed_abstracts.gpt_neox.layers[layer_id]

    #model1.freelaw_expert.layers_9_10_11 = []
    for layer_id in [9,10]: #9,10,11,12,13
      for p1, p2 in zip(model_freelaw.gpt_neox.layers[layer_id].parameters(), model.gpt_neox.layers[layer_id].parameters()):
        p1.data = p1.data*.6 + p2.data*0.4 
      model1.freelaw_expert[layer_id-9] = model_freelaw.gpt_neox.layers[layer_id]

    #model1.arxiv_expert.layers_9_10_11 = []
    for layer_id in [9,10]: #9,10,11,12,13
      for p1, p2 in zip(model_arxiv.gpt_neox.layers[layer_id].parameters(), model.gpt_neox.layers[layer_id].parameters()):
        p1.data = p1.data*.6 + p2.data*0.4 
      model1.arxiv_expert[layer_id-9] = model_arxiv.gpt_neox.layers[layer_id]



  model1 = model1.half().eval()
  model1.save_pretrained("MDEL-theblackcat-chat-5-experts", torch_dtype=torch.float16)
  model1.push_to_hub("Multi-Domain-Expert-Layers/MDEL-theblackcat-chat-5-experts")
  return model1
```