--- license: apache-2.0 --- These are basic classifiers and a BM25 index of Wikipedia used for data tooling research. Using kenhktsui/llm-data-textbook-quality-fasttext-classifer-v1's classifier (MIT) and TurkuNLP's register classifiers. ``` import fasttext, os if not os.path.exists("expert_classify.ftz"): os.system("wget http://dl.turkunlp.org/register-labeling-model/fasttext_model.bin") os.system("wget https://huggingface.co/ontocord/riverbed/resolve/main/rj_model.bin") os.system("wget https://huggingface.co/kenhktsui/llm-data-textbook-quality-fasttext-classifer-v1/resolve/main/model_textbook_quality.bin") os.system("wget https://huggingface.co/ontocord/riverbed/resolve/main/expert_classify.ftz") ### red pajama filter. pred_label "__label__wiki" is data we do not wish to keep. red_pajama_model = fasttext.load_model("rj_model.bin") (pred_label, pred_prob) = red_pajama_model.predict(text) if pred_label == "__label__cc": pred_prob = 1 - pred_prob ### turkunlp registry labeler: https://github.com/TurkuNLP/register-labeling domain_model = fasttext.load_model("fasttext_model.bin") (pred_label, pred_prob) = domain_model.predict(text) ### Pile domain such as github, arxiv, etc. pile_model = fasttext.load_model("expert_classify.ftz") (pred_label, pred_prob) = pile_model.predict(text) ### Textbook quality - e.g., textbooks are all you need textbook_model = fasttext.load_model("model_textbook_quality.bin") (pred_label, pred_prob) = pile_model.predict(text) ``` See the files here: https://huggingface.co/ontocord/riverbed/tree/main This includes a a small whoosh search index of wikidata useful for background knowledge for LLMs. installation: ```import os if not os.path.exists("./wikidata_bm25_whoosh"): os.system("git clone https://huggingface.co/ontocord/riverbed") os.system("pip install -q whoosh") import whoosh.index as whoosh_index from whoosh.qparser import QueryParser from whoosh.analysis import StemmingAnalyzer, Filter class MyFilter(Filter): def __call__(self, tokens): for t in tokens: t.text = t.text.lower() if len(t.text) > 5: yield t t.text = t.text[:5] yield t try: if qp is None: assert False except: bm25_dir = "./riverbed" index = whoosh_index.open_dir(bm25_dir) searcher = index.searcher() qp = QueryParser("content", schema=index.schema) ```