File size: 7,923 Bytes
2ac90ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# Partly revised by YZ @UCL&Moorfields
# --------------------------------------------------------
import math
import sys
import csv
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import Mixup
from timm.utils import accuracy
from typing import Iterable, Optional
import util.misc as misc
import util.lr_sched as lr_sched
from sklearn.metrics import accuracy_score, roc_auc_score, f1_score, average_precision_score,multilabel_confusion_matrix
from pycm import *
import matplotlib.pyplot as plt
import numpy as np
def misc_measures(confusion_matrix):
acc = []
sensitivity = []
specificity = []
precision = []
G = []
F1_score_2 = []
mcc_ = []
for i in range(1, confusion_matrix.shape[0]):
cm1=confusion_matrix[i]
acc.append(1.*(cm1[0,0]+cm1[1,1])/np.sum(cm1))
sensitivity_ = 1.*cm1[1,1]/(cm1[1,0]+cm1[1,1])
sensitivity.append(sensitivity_)
specificity_ = 1.*cm1[0,0]/(cm1[0,1]+cm1[0,0])
specificity.append(specificity_)
precision_ = 1.*cm1[1,1]/(cm1[1,1]+cm1[0,1])
precision.append(precision_)
G.append(np.sqrt(sensitivity_*specificity_))
F1_score_2.append(2*precision_*sensitivity_/(precision_+sensitivity_))
mcc = (cm1[0,0]*cm1[1,1]-cm1[0,1]*cm1[1,0])/np.sqrt((cm1[0,0]+cm1[0,1])*(cm1[0,0]+cm1[1,0])*(cm1[1,1]+cm1[1,0])*(cm1[1,1]+cm1[0,1]))
mcc_.append(mcc)
acc = np.array(acc).mean()
sensitivity = np.array(sensitivity).mean()
specificity = np.array(specificity).mean()
precision = np.array(precision).mean()
G = np.array(G).mean()
F1_score_2 = np.array(F1_score_2).mean()
mcc_ = np.array(mcc_).mean()
return acc, sensitivity, specificity, precision, G, F1_score_2, mcc_
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None, log_writer=None,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs = model(samples)
loss = criterion(outputs, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', max_lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, task, epoch, mode, num_class):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Test:'
if not os.path.exists(task):
os.makedirs(task)
prediction_decode_list = []
prediction_list = []
true_label_decode_list = []
true_label_onehot_list = []
# switch to evaluation mode
model.eval()
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[-1]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
true_label=F.one_hot(target.to(torch.int64), num_classes=num_class)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
prediction_softmax = nn.Softmax(dim=1)(output)
_,prediction_decode = torch.max(prediction_softmax, 1)
_,true_label_decode = torch.max(true_label, 1)
prediction_decode_list.extend(prediction_decode.cpu().detach().numpy())
true_label_decode_list.extend(true_label_decode.cpu().detach().numpy())
true_label_onehot_list.extend(true_label.cpu().detach().numpy())
prediction_list.extend(prediction_softmax.cpu().detach().numpy())
acc1,_ = accuracy(output, target, topk=(1,2))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
# gather the stats from all processes
true_label_decode_list = np.array(true_label_decode_list)
prediction_decode_list = np.array(prediction_decode_list)
confusion_matrix = multilabel_confusion_matrix(true_label_decode_list, prediction_decode_list,labels=[i for i in range(num_class)])
acc, sensitivity, specificity, precision, G, F1, mcc = misc_measures(confusion_matrix)
auc_roc = roc_auc_score(true_label_onehot_list, prediction_list,multi_class='ovr',average='macro')
auc_pr = average_precision_score(true_label_onehot_list, prediction_list,average='macro')
metric_logger.synchronize_between_processes()
print('Sklearn Metrics - Acc: {:.4f} AUC-roc: {:.4f} AUC-pr: {:.4f} F1-score: {:.4f} MCC: {:.4f}'.format(acc, auc_roc, auc_pr, F1, mcc))
results_path = task+'_metrics_{}.csv'.format(mode)
with open(results_path,mode='a',newline='',encoding='utf8') as cfa:
wf = csv.writer(cfa)
data2=[[acc,sensitivity,specificity,precision,auc_roc,auc_pr,F1,mcc,metric_logger.loss]]
for i in data2:
wf.writerow(i)
if mode=='test':
cm = ConfusionMatrix(actual_vector=true_label_decode_list, predict_vector=prediction_decode_list)
cm.plot(cmap=plt.cm.Blues,number_label=True,normalized=True,plot_lib="matplotlib")
plt.savefig(task+'confusion_matrix_test.jpg',dpi=600,bbox_inches ='tight')
return {k: meter.global_avg for k, meter in metric_logger.meters.items()},auc_roc
|